Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake

Yariv Hamiel, & Yuri Fialko

Published July 2007, SCEC Contribution #1072

We study the structure and mechanical properties of faults in the North Anatolian Fault system by observing near-fault deformation induced by the 1999 M w 7.4 Izmit earthquake (Turkey). We use interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System observations to analyze the coseismic surface deformation in the near field of the Izmit rupture. The overall observed coseismic deformation is consistent with deformation predicted by a dislocation model assuming a uniform elastic crust. Previous InSAR studies revealed small-scale changes in the radar range across the nearby faults of the North Anatolian fault system (in particular, the Mudurnu Valley and Iznik faults) (e.g., Wright et al., 2001). We demonstrate that these anomalous range changes are consistent with an elastic response of compliant fault zones to the stress perturbation induced by the Izmit earthquake. We examine the spatial variations and mechanical properties of fault zones around the Mudurnu Valley and Iznik faults using three-dimensional finite element models. In these models, we include compliant fault zones having various geometries and elastic properties and apply stress changes deduced from a kinematic slip model of the Izmit earthquake. The best fitting models suggest that the inferred fault zones have a characteristic width of a few kilometers, depth in excess of 10 km, and reductions in the effective shear modulus of about a factor of 3 compared to the surrounding rocks. The characteristic width of the best fitting fault zone models is consistent with field observations along the North Anatolian Fault system (Ambraseys, 1970). Our results are also in agreement with InSAR observations of small-scale deformation on faults in the Eastern California Shear Zone in response to the 1992 Landers and 1999 Hector Mine earthquakes (Fialko et al., 2002; Fialko, 2004). The inferred compliant fault zones likely represent intense damage and may be quite commonly associated with large crustal faults.

Citation
Hamiel, Y., & Fialko, Y. (2007). Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. Journal of Geophysical Research, 112(B07412). doi: 10.1029/2006JB004777.