Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Three-Dimensional Ground Motion Simulations for Large Earthquakes on the San Andreas Fault with dynamic and Observational Constraints

Kim B. Olsen

Published September 2001, SCEC Contribution #530

I have simulated 0–0.5 Hz viscoelastic ground motion in Los Angeles from M 7.5 earthquakes on the San Andreas fault using a fourth-order staggered-grid finite-difference method. Two scenarios are considered: (a) a southeast propagating and (b) a northwest propagating rupture along a 170-km long stretch of the fault near Los Angeles in a 3D velocity model. The scenarios use variable slip and rise time distributions inferred from the kinematic inversion results for the 1992 M 7.3 Landers, California, earthquake. The spatially variable static slip distribution used in this study, unlike that modeled in a recent study,1 is in agreement with constraints provided by rupture dynamics. I find peak ground velocities for (a) and (b) of 49 cm/s and 67 cm/s, respectively, near the fault. The near-fault peak motions for scenario (a) are smaller compared to previous estimates from 3D modeling for both rough and smooth faults.1,2 The lower near-fault peak motions are in closer agreements with constraints from precarious rocks located near the fault. Peak velocities in Los Angeles are about 30% larger for (b) 45 cm/s compared to those for (a) 35 cm/s.

Citation
Olsen, K. B. (2001). Three-Dimensional Ground Motion Simulations for Large Earthquakes on the San Andreas Fault with dynamic and Observational Constraints. Journal of Computational Acoustics, 9(3), 1203-1215. doi: 10.1142/S0218396X01001273.