Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence

James F. Dolan, Lee J. McAuliffe, Ed J. Rhodes, Sally F. McGill, & Robert Zinke

Published July 15, 2016, SCEC Contribution #6243

Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0+3.5/−2.5 m fault offsets with a newly developed infrared-stimulated luminescence method show that the fault was slipping at >14.0+2.2/−1.8 mm/yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5–2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the c. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the “on–off” behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8–13 ka) Garlock slip rate of 6.5 ±1.5 mm/yr. These observations indicate the occurrence of millennia-long strain “super-cycles” on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates.

Citation
Dolan, J. F., McAuliffe, L. J., Rhodes, E. J., McGill, S. F., & Zinke, R. (2016). Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence. Earth and Planetary Science Letters, 446, 123-136.