Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Frictional strengths of fault gouge from a creeping segment of the Bartlett Springs Fault, northern California

Jerlyn L. Swiatlowski, Diane Moore, & David A. Lockner

Published August 8, 2017, SCEC Contribution #7440, 2017 SCEC Annual Meeting Poster #112

The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault that is part of the San Andreas Fault System in Northern California with an estimated slip rate of ~7 mm/yr. Near Lake Pillsbury, the BSF slip rate is expressed as fault creep at a rate of 3.4 0.2 mm/yr, measured at an alinement array (site: BSLP). An exposure of the BSF near the alinement array reveals a ~1.5 m-wide zone of serpentinite-bearing gouge that has risen buoyantly to the surface in a manner similar to that documented for the San Andreas creeping section at SAFOD. The gouge is a heterogeneous mixture of the high-temperature serpentine mineral antigorite and the greenschist facies alteration assemblage talc + chlorite + tremolite, all of which are stable at temperatures >250°C, indicating that the gouge was tectonically entrained in the fault from depths near the base of the seismogenic zone. Antigorite has been shown to promote fault creep when sheared between crustal rocks at hydrothermal conditions. However, the effect of thorough metasomatism of antigorite on sliding stability are unknown. We conducted velocity-stepping strength experiments to explore the effect on frictional behavior if the serpentinite is completely replaced by the talc-chlorite-tremolite assemblage. The experiments were conducted at 290°C, 140 MPa effective normal stress, and 90 MPa fluid pressure to simulate conditions at ~9 km depth. We tested mixtures of the three minerals in varying proportions (ternary mixing-law), using porphyroclasts from the BSF gouge for the chlorite and tremolite end members and talc from the stock used in previously published studies. The end-member samples show a four-fold variation in frictional strength: talc is the weakest (µ ~ 0.12), tremolite the strongest (µ ~ 0.55), and chlorite intermediate (µ ~ 0.30). Talc and chlorite are velocity strengthening (a-b > 0) and tremolite velocity weakening (a-b < 0) over the conditions tested. Talc is more effective than chlorite in weakening and promoting stable slip in tremolite-bearing gouge, and mixtures containing >50% talc have coefficients of friction <0.2 with (a-b) ≥ 0. Talc would thus need to be concentrated in the sheared gouge matrix to promote creep in thoroughly altered serpentinite at depth.

Key Words
fault creep, coefficient of friction, Bartlett Springs Fault

Swiatlowski, J. L., Moore, D., & Lockner, D. A. (2017, 08). Frictional strengths of fault gouge from a creeping segment of the Bartlett Springs Fault, northern California. Poster Presentation at 2017 SCEC Annual Meeting.

Related Projects & Working Groups
Earthquake Geology