Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

## Earthquake Scaling Relations for Mid-Ocean Ridge Transform Faults

Margaret S. Boettcher, & Thomas H. Jordan

Published December 2004, SCEC Contribution #768

A mid-ocean ridge transform fault (RTF) of length L, slip rate V, and moment release rate dot above M can be characterized by a seismic coupling coefficient χ = A E/A T, where A E ∼ dot above M/V is an effective seismic area and A T ∝ L 3/2 V −1/2 is the area above an isotherm T ref. A global set of 65 RTFs with a combined length of 16,410 km is well described by a linear scaling relation (1) A E ∝ A T, which yields χ = 0.15 ± 0.05 for T ref = 600°C. Therefore about 85% of the slip above the 600°C isotherm must be accommodated by subseismic mechanisms, and this slip partitioning does not depend systematically on either V or L. RTF seismicity can be fit by a truncated Gutenberg-Richter distribution with a slope β = 2/3 in which the cumulative number of events N 0 and the upper cutoff moment M C = μD C A C depend on A T. Data for the largest events are consistent with a self-similar slip scaling, D C ∝ A C 1/2, and a square root areal scaling (2) A C ∝ A T 1/2. If relations 1 and 2 apply, then moment balance requires that the dimensionless seismic productivity, ν0 ∝ inline equation 0/A T V, should scale as ν0 ∝ A T −1/4, which we confirm using small events. Hence the frequencies of both small and large earthquakes adjust with A T to maintain constant coupling. RTF scaling relations appear to violate the single-mode hypothesis, which states that a fault patch is either fully seismic or fully aseismic and thus implies A C ≤ A E. The heterogeneities in the stress distribution and fault structure responsible for relation 2 may arise from a thermally regulated, dynamic balance between the growth and coalescence of fault segments within a rapidly evolving fault zone.

Key Words
scale factor, plate boundaries, seismic moment, magnitude, slip rates, strike-slip faults, teleseismic signals, transform faults, plate tectonics, seismicity, tectonics, ocean floors, earthquakes, faults, seismotectonics, mid-ocean ridges

Citation
Boettcher, M. S., & Jordan, T. H. (2004). Earthquake Scaling Relations for Mid-Ocean Ridge Transform Faults. Journal of Geophysical Research, 109(B12302). doi: 10.1029/2004JB003110.