Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

The slow slip of viscous faults

Robert C. Viesca, & Pierre Dublanchet

Published April 15, 2019, SCEC Contribution #8132

We examine a simple mechanism for the spatio-temporal evolution of transient, slow slip. We consider the problem of in-plane or anti-plane slip on a fault that lies within an elastic continuum and whose strength is proportional to sliding rate. This rate dependence may correspond to a viscously deforming shear zone or the linearization of a non-linear, rate-dependent fault strength. We examine the response of such a fault to external forcing, such as local increases in shear stress or pore fluid pressure. We show that the slip and slip rate are governed by a type of diffusion equation, the solution of which may be found by using a Green's function approach. We derive the appropriate long-time, self-similar asymptotic expansion for slip or slip rate, which depend on both time t and a similarity coordinate \eta=x/t, where x denotes fault position. The similarity coordinate shows a departure from classical diffusion and is owed to the non-local nature of elastic interaction among points on an interface between elastic half-spaces. We demonstrate the solution and asymptotic analysis of several example problems. Following sudden impositions of loading, we show that slip rate ultimately decays as 1/t while spreading proportionally to t, implying both a logarithmic accumulation of displacement as well as a constant moment rate. We discuss the implication for models of post-seismic slip as well as spontaneously emerging slow slip events.

Citation
Viesca, R. C., & Dublanchet, P. (2019). The slow slip of viscous faults. Journal of Geophysical Research: Solid Earth, 124. doi: 10.1029/2018JB016294.