Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Crossing the shoreline with DAS: Photonic seismology in Monterey Bay using the MARS cable

Nate J. Lindsey, T. Craig Dawe, & Jonathan Ajo-Franklin

Published August 19, 2019, SCEC Contribution #9913, 2019 SCEC Annual Meeting Talk on Tue 0830

Emerging fiber-optic sensing technology coupled to existing subsea telecommunications cables can provide access to unprecedented seafloor observations of both ocean and solid earth phenomena. During March 2018, we conducted a Distributed Acoustic Sensing (DAS) measurement campaign along a buried fiber-optic cable typically used for data transfer to and from a scientific cabled observatory offshore Monterey Bay, called the Monterey Accelerated Research System (MARS) node. During a 4-day period of MARS node maintenance the MARS cable was repurposed as an evenly-spaced ~10,000-component, 20-kilometer-long DAS array. Full wavefield observation of a M3.4 earthquake that occurred 45-km inland near Gilroy, CA illuminated multiple recently-mapped and previously unmapped submarine fault zones, which were observed to slow the propagating wavefront and act as point scatterers reradiating body-wave energy as Scholte waves. In the shallow water of the MARS cable (h<100m), dominant noise (f~0.1-0.3 Hz) was found to match the predicted seafloor pressure field induced by shoaling ocean surface waves, otherwise known as the primary ocean microseism. DAS amplitudes track sea state dynamics during a storm cycle in the Northern Pacific, correlating with features of local bay buoy and onshore broadband seismometer data streams. We also observed secondary microseisms (f~0.5-2 Hz). Decomposing the incoming and outgoing wavefield components of the primary microseism noise we validated the Longuet-Higgins-Hasselmann theory that bi-directional ocean wind-waves setup by the coast reflection undergo nonlinear wave mixing to cause the secondary microseisms, even when the outgoing energy is only 1% of the incoming energy. We observe additional noise patterns at higher and lower frequencies that are consistent with previous point sensor observations of post-low-tide tidal bores (f~1-5 Hz), storm-induced sediment transport (f~0.8-10 Hz), infragravity waves (f=0.01-0.05 Hz), and breaking internal waves (f~0.001 Hz). The number of geophysical interactions observed over this brief four-day dark fiber recording evidences the introduction of an important new technique for seafloor science.

Citation
Lindsey, N. J., Dawe, T., & Ajo-Franklin, J. (2019, 08). Crossing the shoreline with DAS: Photonic seismology in Monterey Bay using the MARS cable. Oral Presentation at 2019 SCEC Annual Meeting.


Related Projects & Working Groups
Seismology