
SCEC/USGS Dynamic Rupture Benchmarks TPV36 and TPV37: Shallow Dip Thrust Fault

Michael Barall, U.S. Geological Survey

SCEC/USGS Dynamic Rupture Workshop In collaboration with the CRESCENT DET Working Group November 4, 2024

1

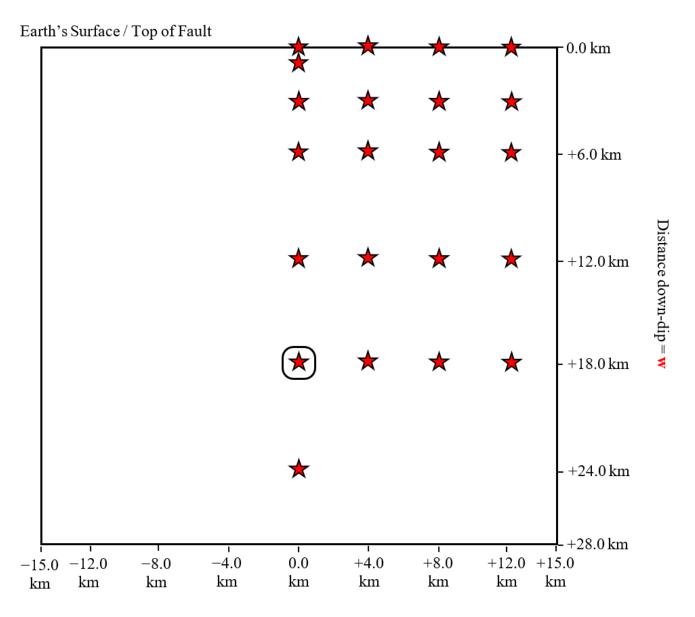
Linear Slip-Weakening Friction

- Static coefficient of friction: $\mu_s = 0.575$
- Dynamic coefficient of friction: $\mu_d = 0.450$
- Slip-weakening critical distance: $d_0 = 0.18 \text{ m}$

TPV36 and TPV37 Fault Geometry

- Dip angle 15 degrees.
- 30 km along strike.
- 28 km down-dip.
- Hypocenter 18 km down-dip.
- Fault reaches the Earth's surface.

Material Properties

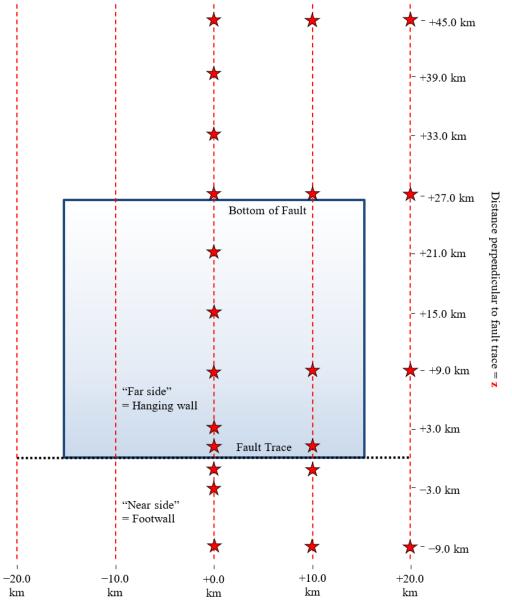

- Uniform linear elastic half-space.
- Density: $\rho = 2670 \text{ kg/m}^3$
- S-wave speed: $V_s = 3464 \text{ m/s}$
- P-wave speed: $V_p = 6000 \text{ m/s}$

Initial Stress is Proportional to Depth

• Approximately lithostatic minus hydrostatic

Nucleation is by Time-Weakening

- Nucleation zone radius $r_{\rm crit} = 4000 \text{ m}$
- Frictional cohesion at the Earth's surface: $C_0 = 4.0$ MPa (TPV36), $C_0 = 15.0$ MPa (TPV37), tapering to zero at 8 km down-dip
 - For TPV36, the cohesion allows the rupture to reach the Earth's surface.
 - For TPV37, the cohesion makes the rupture stop spontaneously before it reaches the Earth's surface.


On-Fault Stations: Time Series Files

Each star is the location of a station on the fault.

For each station, modelers report the following as a function of time:

- Vertical and horizontal slip.
- Vertical and horizontal slip rate.
- Vertical and horizontal shear stress.
- Normal stress.

Distance along-strike = **x**

Off-Fault Stations: Time Series Files

Each star is the location of a station on the Earth's surface.

For each station, modelers report the following as a function of time:

- Three components of displacement.
- Three components of velocity.

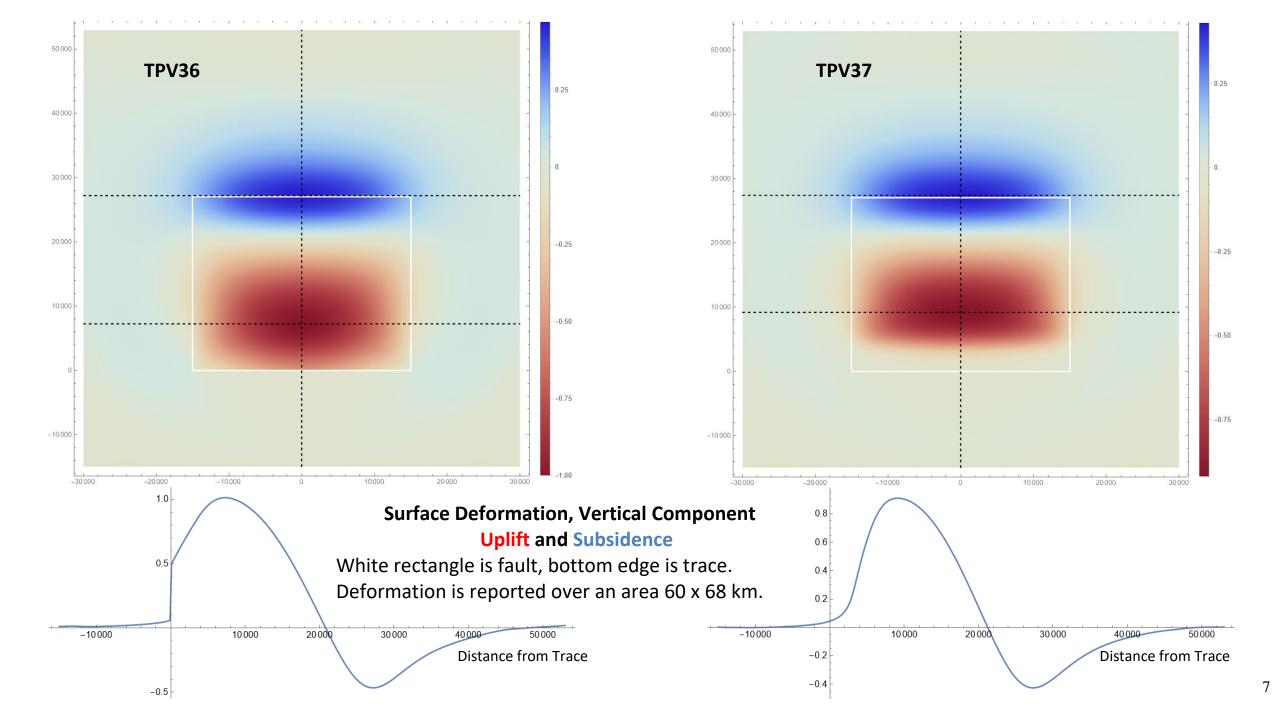
The stations occupy a much larger area than the fault, to cover the area with significant uplift or subsidence.

Distance along-strike = x

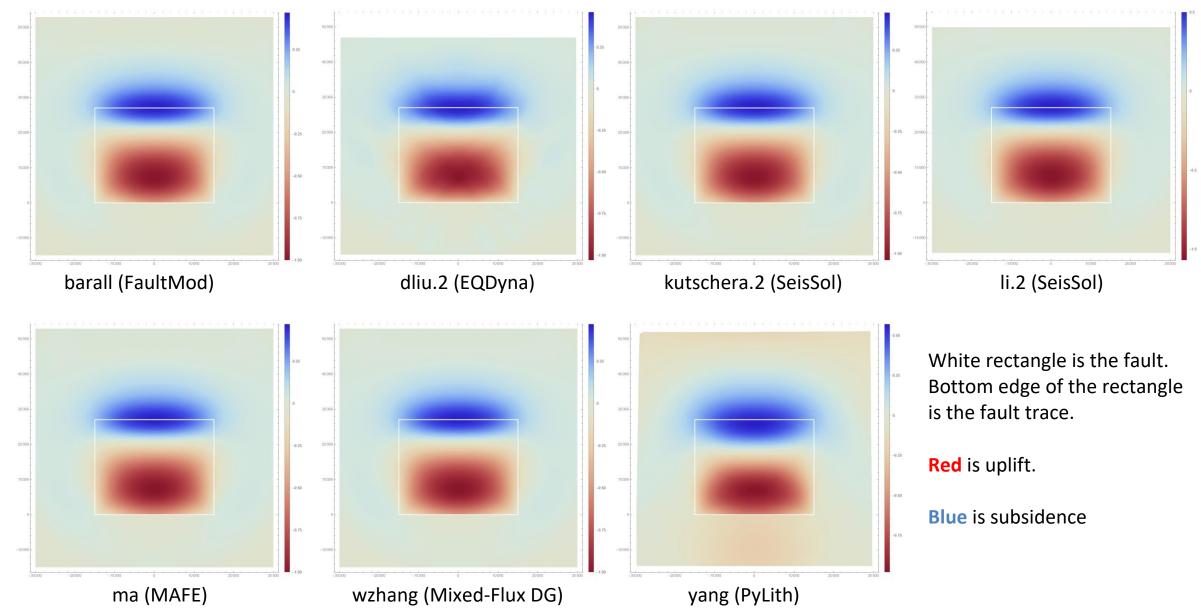
Contour-Plot File

- Contains a list of points on the fault surface, and the time at which each point on the fault begins to slip.
- Modelers can choose their own list of points the don't have to form any particular pattern.
- Used by the website to make contour plots of the rupture front propagation.

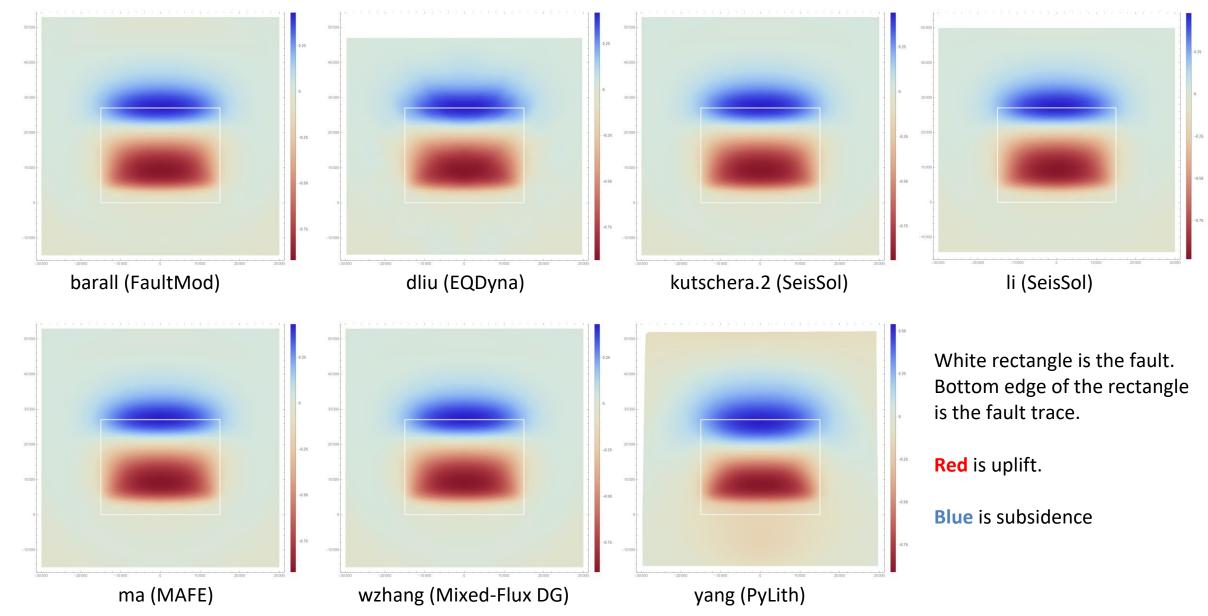
Surface Deformation File


NEW!

- Contains a list of points on the Earth's surface, and the final displacement of each point at the end of the simulation.
- Modelers can choose their own list of points the don't have to form any particular pattern.
- Points cover an area measuring 60 km parallel to strike, and 68 km perpendicular to strike (much larger than the fault).
- Can be used to create a plot of uplift and subsidence.
- The website cannot handle the surface deformation file.


Metrics

- From the modeler's files, we compute quantitative metrics, comparing every pair of time-series and every pair of contour plots.
- We also compute summaries that offer quantitative overviews of how well the modelers agree with each other.

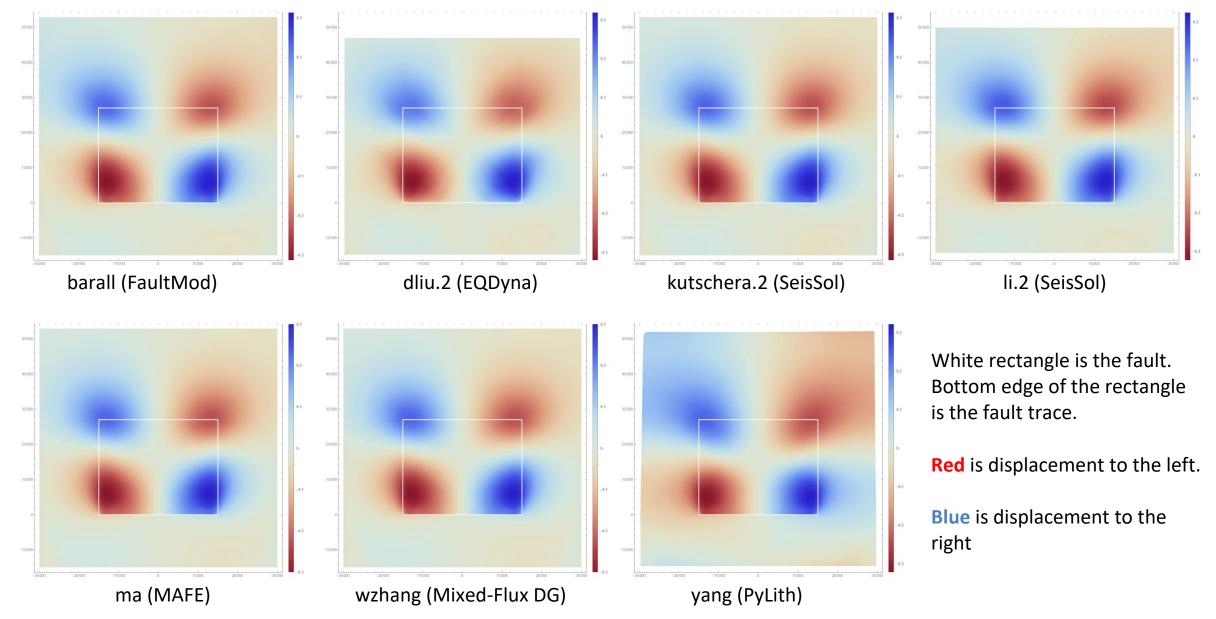

Surface Deformation Plots

TPV36 Surface Deformation – Vertical Component

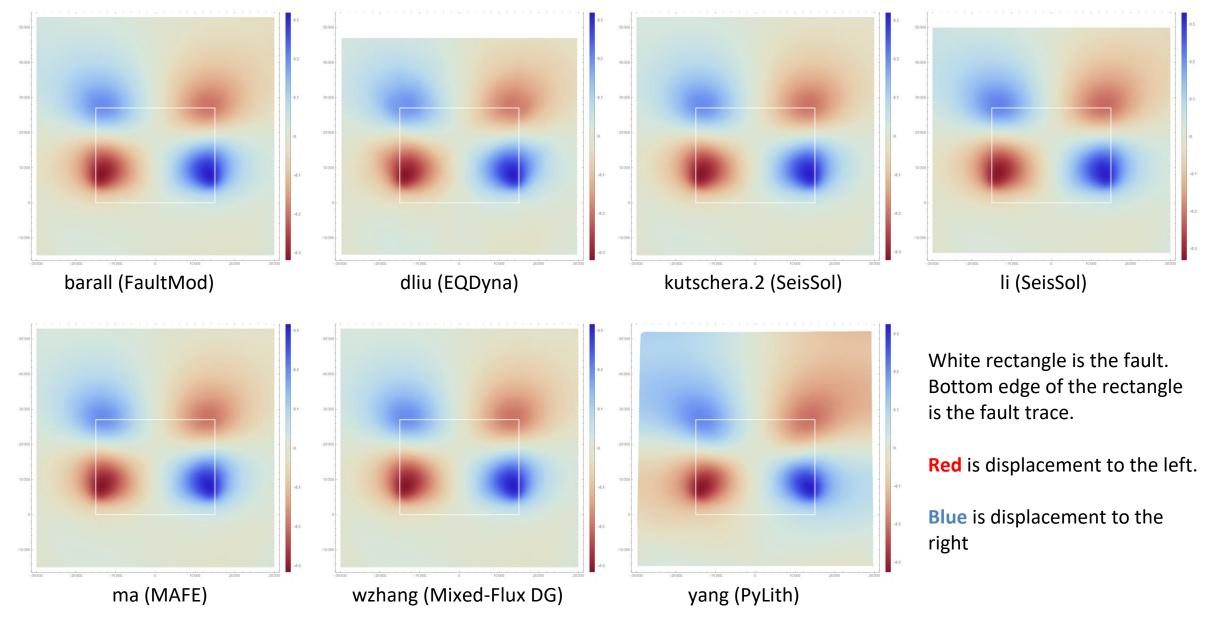
TPV37 Surface Deformation – Vertical Component

Peak Uplift and Subsidence

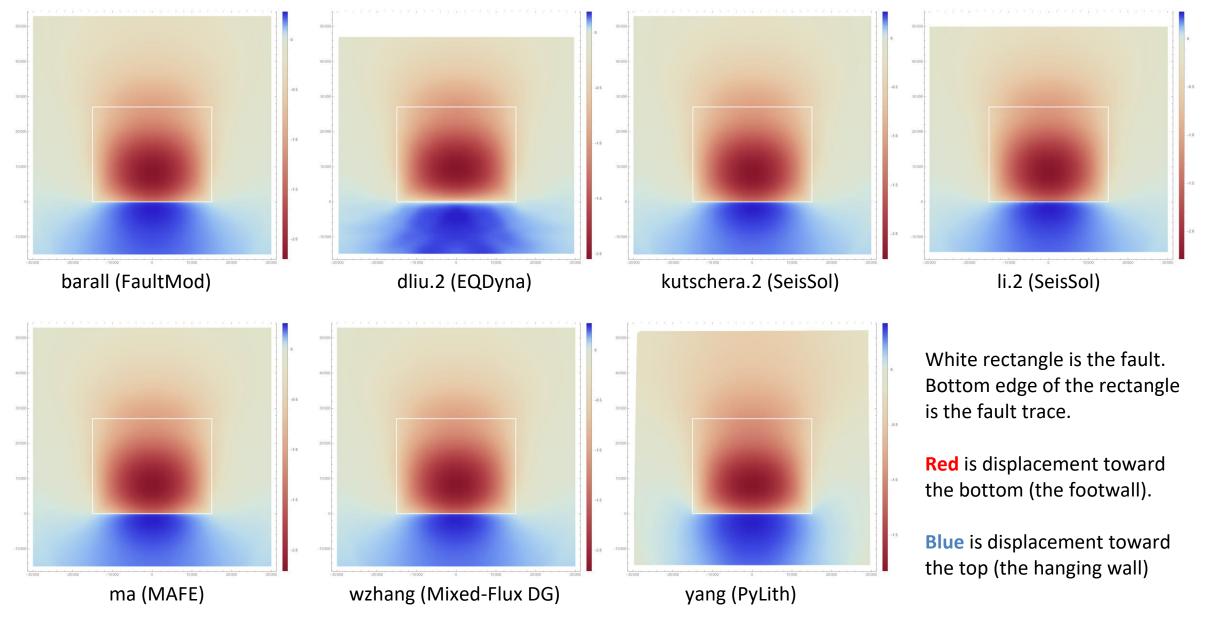
TPV36

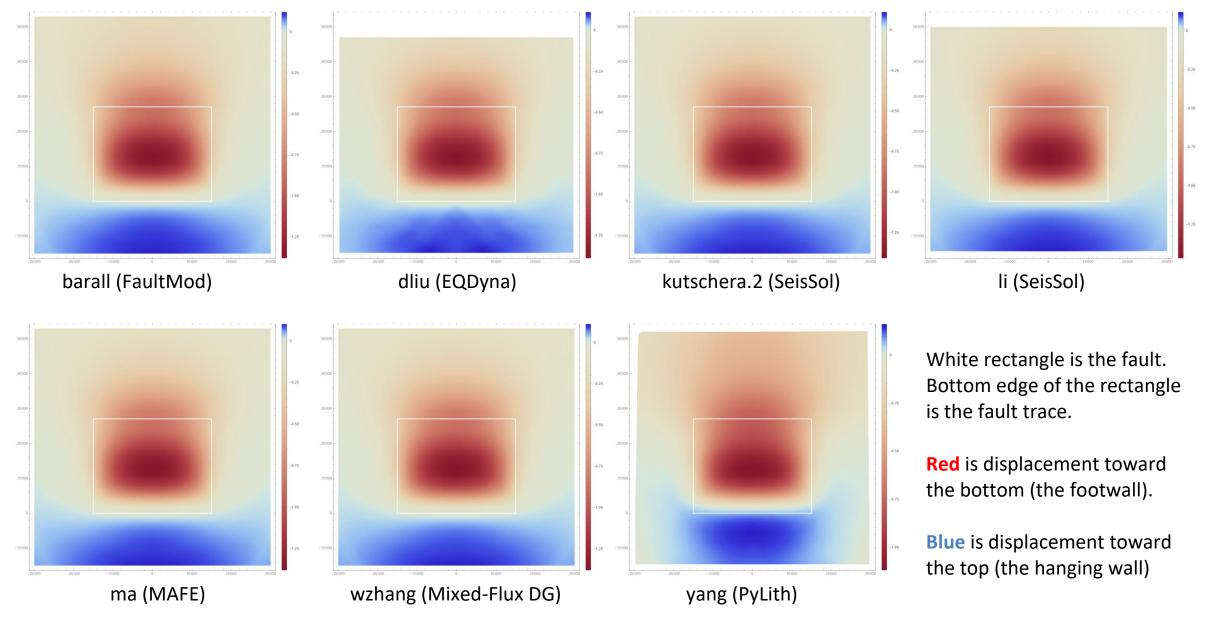

User	Max Uplift (m)	Max Subsidence (m)
barall	1.021	0.469
dliu.2	1.031	0.462
kutschera.2	1.039	0.476
li.2	1.069	0.525
ma	1.020	0.470
wzhang	1.011	0.470
yang	0.982	0.569

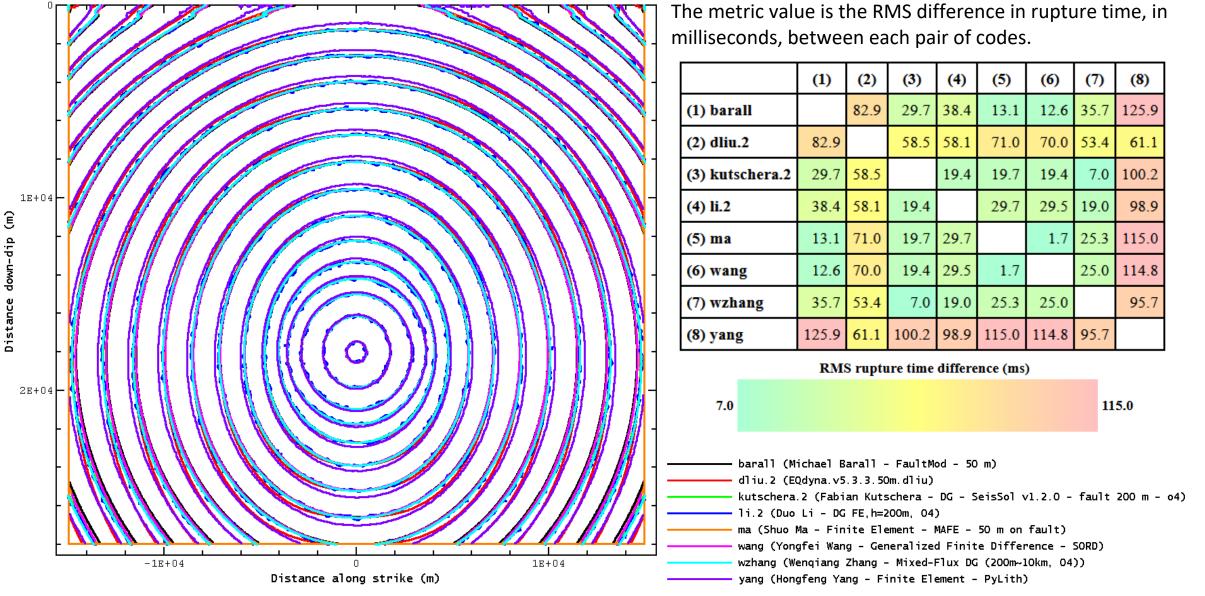
barall (Michael Barall - FaultMod - 50 m) dliu.2 (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) li.2 (Duo Li - DG FE,h=200m, O4) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault) wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, O4)) yang (Hongfeng Yang - Finite Element - PyLith) **TPV37**


User	Max Uplift (m)	Max Subsidence (m)
barall	0.920	0.430
dliu	0.928	0.425
kutschera.2	0.936	0.437
li	0.977	0.482
ma	0.920	0.431
wzhang	0.914	0.431
yang	0.913	0.536

barall (Michael Barall - FaultMod - 50 m) dliu (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) li (Duo Li - DG, h200,o4) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault) wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, O4)) yang (Hongfeng Yang - Finite Element - PyLith)


TPV36 Surface Deformation – Horizontal Component (Parallel to the Fault Trace)


TPV37 Surface Deformation – Horizontal Component (Parallel to the Fault Trace)


TPV36 Surface Deformation – Normal Component (Perpendicular to the Fault Trace)

TPV37 Surface Deformation – Normal Component (Perpendicular to the Fault Trace)

Rupture Contour Plots

Off-Fault Stations: Time Series Data

Metric Comparison for Each Pair of Users: Summary Across All Off-Fault Stations

TPV36

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		<u>45.9</u>	<u>8.3</u>	<u>12.2</u>	<u>6.6</u>	<u>6.8</u>	<u>17.2</u>	<u>28.9</u>
(2) dliu.2	<u>45.9</u>		<u>46.2</u>	<u>46.3</u>	<u>44.8</u>	<u>44.8</u>	<u>49.4</u>	<u>55.2</u>
(3) kutschera	.2 <u>8.3</u>	<u>46.2</u>		<u>8.7</u>	<u>6.1</u>	<u>7.1</u>	<u>18.3</u>	<u>30.2</u>
(4) li.2	<u>12.2</u>	<u>46.3</u>	<u>8.7</u>		<u>10.8</u>	<u>11.2</u>	<u>17.7</u>	<u>32.1</u>
(5) ma	<u>6.6</u>	<u>44.8</u>	<u>6.1</u>	<u>10.8</u>		<u>1.6</u>	<u>16.0</u>	<u>28.9</u>
(6) wang	<u>6.8</u>	<u>44.8</u>	<u>7.1</u>	<u>11.2</u>	<u>1.6</u>		<u>15.6</u>	<u>29.0</u>
(7) wzhang	<u>17.2</u>	<u>49.4</u>	<u>18.3</u>	<u>17.7</u>	<u>16.0</u>	<u>15.6</u>		<u>36.1</u>
(8) yang	<u>28.9</u>	<u>55.2</u>	<u>30.2</u>	<u>32.1</u>	<u>28.9</u>	<u>29.0</u>	<u>36.1</u>	
			Users	;				
(1) barall	Michael 1	Barall -	Fault	/lod - 5	0 m			
(2) dliu.2	EQdyna.	v5.3.3.	50m.dli	iu				
(3) kutschera.2	Fabian K	utscher	ra - DG	- Seis	Sol v1.	2.0 - fa	ult 200	m - 04
(4) li.2	Duo Li -	DG FE	, h=200	m, O4				
(5) ma	Shuo Ma	- Finit	e Elem	ent - M	AFE -	50 m o	n fault	
(6) wang	Yongfei V	Wang -	Genera	alized I	inite D	oifferen	ce - SC	ORD
(7) wzhang	Wenqian	g Zhan	g - Mix	ed-Flu	x DG (200m~	10km,	O4)
(8) yang	Hongfen	g Yang	- Finite	e Eleme	ent - Py	/Lith		

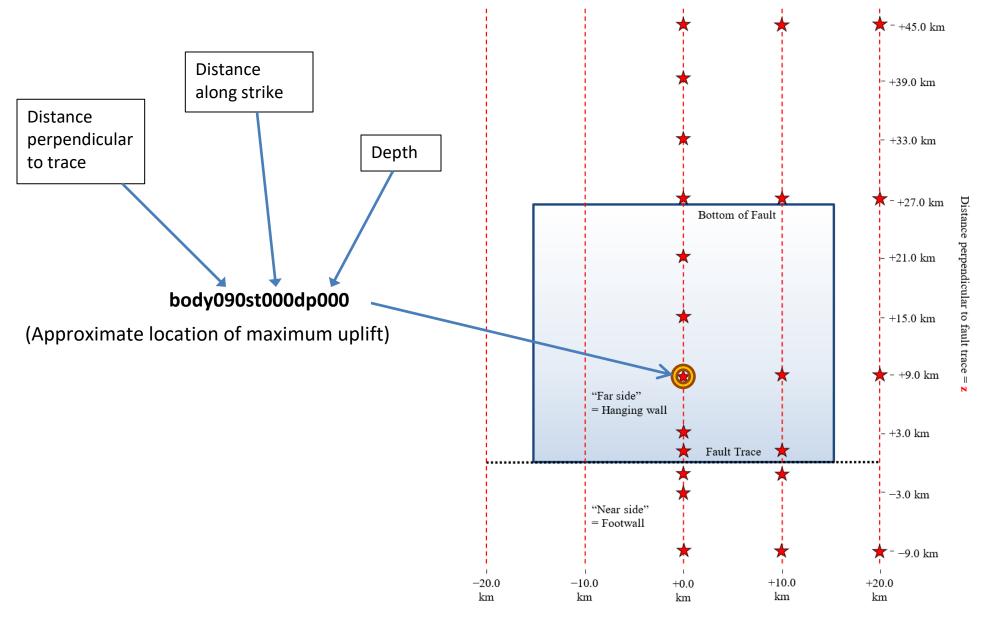
TPV37

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(1)							
(1) barall		<u>47.0</u>	<u>6.9</u>	<u>10.0</u>	<u>5.3</u>	<u>6.0</u>	<u>9.5</u>	<u>36.2</u>
(2) dliu	<u>47.0</u>		<u>46.2</u>	<u>45.3</u>	<u>45.7</u>	<u>41.3</u>	<u>46.8</u>	<u>62.7</u>
(3) kutschera	2 <u>6.9</u>	<u>46.2</u>		<u>7.1</u>	<u>5.3</u>	<u>7.7</u>	<u>10.3</u>	<u>37.9</u>
(4) li	<u>10.0</u>	<u>45.3</u>	<u>7.1</u>		<u>9.3</u>	<u>11.1</u>	<u>14.2</u>	<u>35.6</u>
(5) ma	<u>5.3</u>	<u>45.7</u>	<u>5.3</u>	<u>9.3</u>		<u>4.1</u>	<u>8.4</u>	<u>37.0</u>
(6) wang	<u>6.0</u>	<u>41.3</u>	<u>7.7</u>	<u>11.1</u>	<u>4.1</u>		<u>7.1</u>	<u>37.0</u>
(7) wzhang	<u>9.5</u>	<u>46.8</u>	<u>10.3</u>	<u>14.2</u>	<u>8.4</u>	<u>7.1</u>		<u>38.8</u>
(8) yang	<u>36.2</u>	<u>62.7</u>	<u>37.9</u>	<u>35.6</u>	<u>37.0</u>	<u>37.0</u>	<u>38.8</u>	
			Users					
(1) barall	Michael I	- Barall	FaultN	1od - 50	0 m			
(2) dliu	EQdyna.v	75.3.3.5	0m.dli	u				
(3) kutschera.2	Fabian K	utscher	a - DG	- SeisS	ol v1.2	.0 - fau	ılt 200 ı	m - 04
(4) li	Duo Li - DG, h200,o4							
(5) ma	Shuo Ma - Finite Element - MAFE - 50 m on fault							
(6) wang	Yongfei Wang - Generalized Finite Difference - SORD							
(7) wzhang	Wenqiang	g Zhang	g - Mix	ed-Flux	DG (2	200m~1	0km, 0	04)
(8) yang	Hongfeng	g Yang	- Finite	Eleme	nt - Py	Lith		

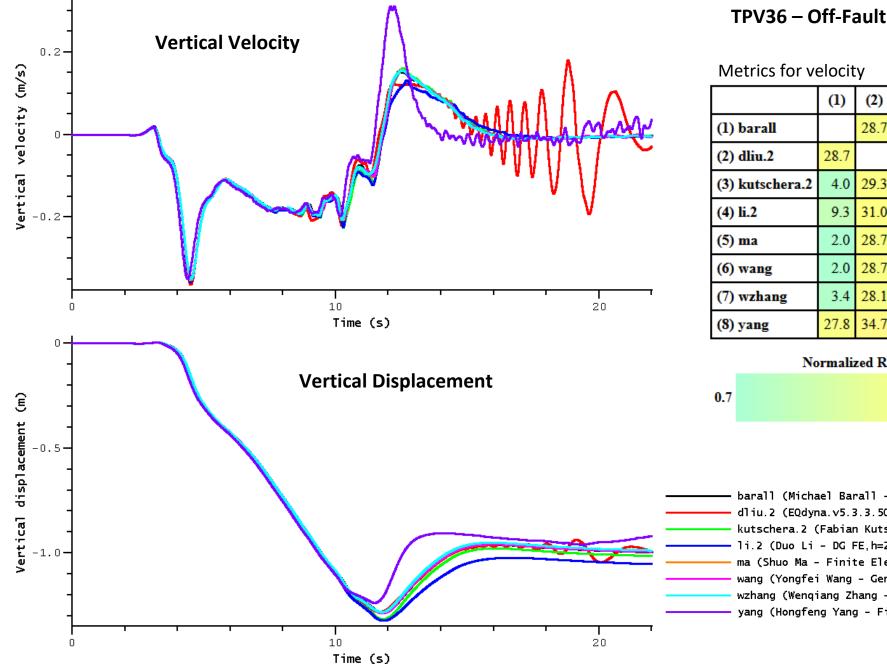
The metric for two time series is the RMS difference between them, normalized to the range 0 to 200.

- Lower numbers are better; 0 is a perfect match, and values about 10 or less are a good match.
- We apply an optimum relative time shift when comparing, allowing for differences in propagation speed.

Metric Comparison for Each Off-Fault Station: Summary Across All Users

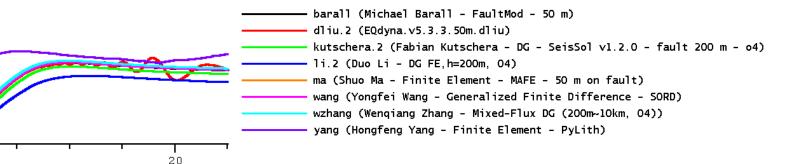

TPV37

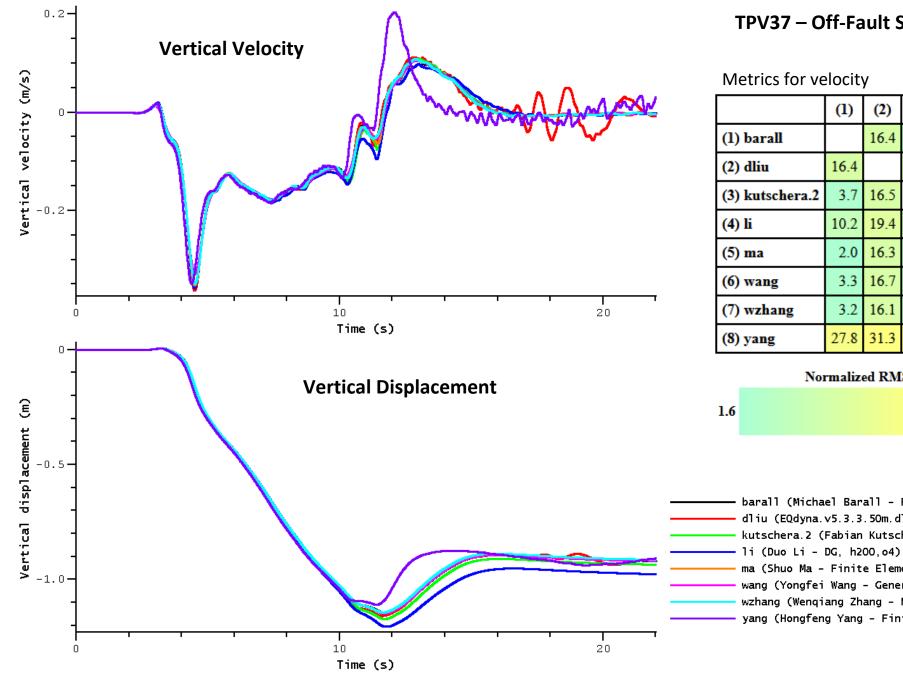
TPV36


	3d-disp	3d-vel	t-shift	
body-010st000dp000	<u>67.9</u>	<u>60.6</u>	0.211	
body-010st100dp000	<u>32.1</u>	<u>26.5</u>	0.057	
body-030st000dp000	<u>24.6</u>	<u>34.2</u>	0.045	
body-090st000dp000	<u>24.5</u>	<u>39.2</u>	0.062	
body-090st100dp000	<u>30.8</u>	<u>52.7</u>	0.233	
body-090st200dp000	<u>35.1</u>	<u>56.5</u>	0.286	
body010st000dp000	<u>15.6</u>	<u>23.8</u>	0.040	
body010st100dp000	<u>10.8</u>	<u>16.2</u>	0.062	
body030st000dp000	<u>8.3</u>	<u>18.2</u>	0.036	
body090st000dp000	<u>5.5</u>	<u>16.2</u>	0.126	
body090st100dp000	<u>4.8</u>	<u>10.6</u>	0.058	
body090st200dp000	<u>11.4</u>	<u>26.8</u>	0.087	
body150st000dp000	<u>7.2</u>	<u>18.3</u>	0.143	
body210st000dp000	<u>8.0</u>	<u>20.0</u>	0.086	
body270st000dp000	<u>5.8</u>	<u>20.4</u>	0.065	
body270st100dp000	<u>5.4</u>	<u>22.1</u>	0.089	
body270st200dp000	<u>9.5</u>	<u>29.5</u>	0.087	
body330st000dp000	<u>6.7</u>	<u>22.4</u>	0.079	
body390st000dp000	<u>51.9</u>	<u>52.3</u>	0.175	3d-di
body450st000dp000	<u>10.7</u>	<u>24.3</u>	0.128	3d-ve
body450st100dp000	<u>12.1</u>	<u>30.7</u>	0.115	t-shif
body450st200dp000	<u>13.6</u>	<u>30.8</u>	0.090	

			3d-disp	3d-vel	t-shift
	ſ	body-010st000dp000	<u>36.0</u>	<u>38.2</u>	0.045
		body-010st100dp000	<u>34.7</u>	<u>31.9</u>	0.048
Г		body-030st000dp000	<u>33.4</u>	<u>37.7</u>	0.047
• F	ootwall \prec	body-090st000dp000	<u>29.0</u>	<u>40.3</u>	0.068
		body-090st100dp000	<u>28.9</u>	<u>41.2</u>	0.077
	l	body-090st200dp000	<u>37.5</u>	<u>41.3</u>	0.259
		body010st000dp000	<u>26.0</u>	<u>33.7</u>	0.041
		body010st100dp000	<u>25.2</u>	<u>28.9</u>	0.052
		body030st000dp000	<u>11.7</u>	<u>24.7</u>	0.036
		body090st000dp000	<u>5.2</u>	<u>13.9</u>	0.073
		body090st100dp000	<u>4.5</u>	<u>9.6</u>	0.048
		body090st200dp000	<u>11.7</u>	<u>27.2</u>	0.085
		body150st000dp000	<u>7.2</u>	<u>17.3</u>	0.102
		body210st000dp000	<u>8.8</u>	<u>21.0</u>	0.084
		body270st000dp000	<u>5.7</u>	<u>20.7</u>	0.066
		body270st100dp000	<u>5.4</u>	<u>22.6</u>	0.087
		body270st200dp000	<u>10.7</u>	<u>30.7</u>	0.086
	Fields	body330st000dp000	<u>7.7</u>	<u>24.7</u>	0.088
isp	Displacement vector	body390st000dp000	<u>58.8</u>	<u>57.3</u>	0.236
el el	Velocity vector	body450st000dp000	<u>13.4</u>	<u>27.9</u>	0.142
it	Time shift	body450st100dp000	<u>15.1</u>	<u>34.9</u>	0.124
		body450st200dp000	<u>17.4</u>	<u>33.9</u>	0.099

Off-Fault Stations							
body-010st000dp000	body -1.0 km, strike 0.0 km, depth 0.0 km						
body-010st100dp000	body -1.0 km, strike 10.0 km, depth 0.0 km						
body-030st000dp000	body -3.0 km, strike 0.0 km, depth 0.0 km						
body-090st000dp000	body -9.0 km, strike 0.0 km, depth 0.0 km						
body-090st100dp000	body -9.0 km, strike 10.0 km, depth 0.0 km						
body-090st200dp000	body -9.0 km, strike 20.0 km, depth 0.0 km						
body010st000dp000	body 1.0 km, strike 0.0 km, depth 0.0 km						
body010st100dp000	body 1.0 km, strike 10.0 km, depth 0.0 km						
body030st000dp000	body 3.0 km, strike 0.0 km, depth 0.0 km						
body090st000dp000	body 9.0 km, strike 0.0 km, depth 0.0 km						
body090st100dp000	body 9.0 km, strike 10.0 km, depth 0.0 km						
body090st200dp000	body 9.0 km, strike 20.0 km, depth 0.0 km						
body150st000dp000	body 15.0 km, strike 0.0 km, depth 0.0 km						
body210st000dp000	body 21.0 km, strike 0.0 km, depth 0.0 km						
body270st000dp000	body 27.0 km, strike 0.0 km, depth 0.0 km						
body270st100dp000	body 27.0 km, strike 10.0 km, depth 0.0 km						
body270st200dp000	body 27.0 km, strike 20.0 km, depth 0.0 km						
body330st000dp000	body 33.0 km, strike 0.0 km, depth 0.0 km						
body390st000dp000	body 39.0 km, strike 0.0 km, depth 0.0 km						
body450st000dp000	body 45.0 km, strike 0.0 km, depth 0.0 km						
body450st100dp000	body 45.0 km, strike 10.0 km, depth 0.0 km						
body450st200dp000	body 45.0 km, strike 20.0 km, depth 0.0 km						

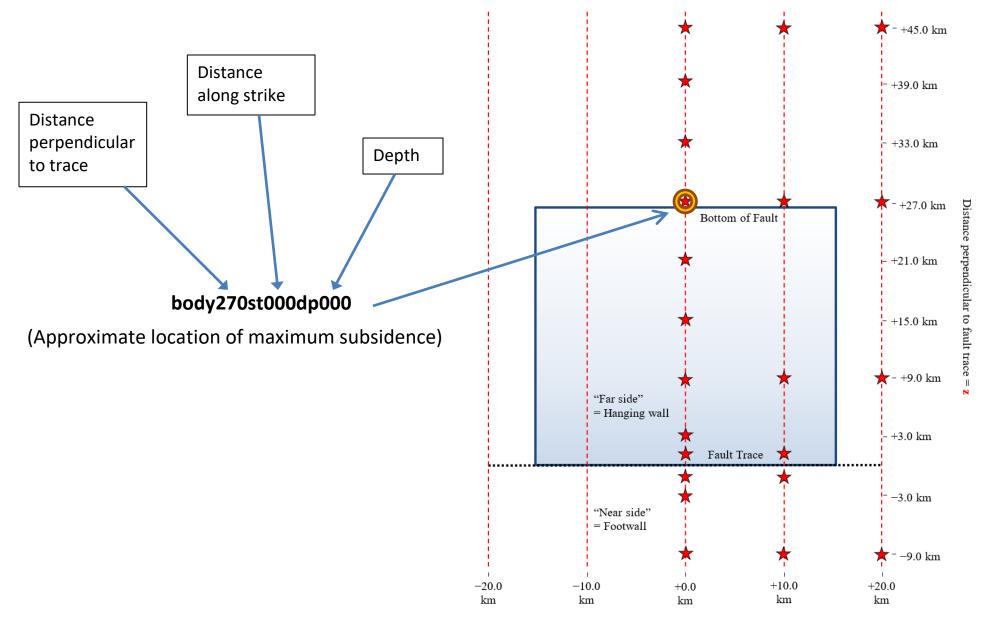

Distance along-strike $= \mathbf{x}$



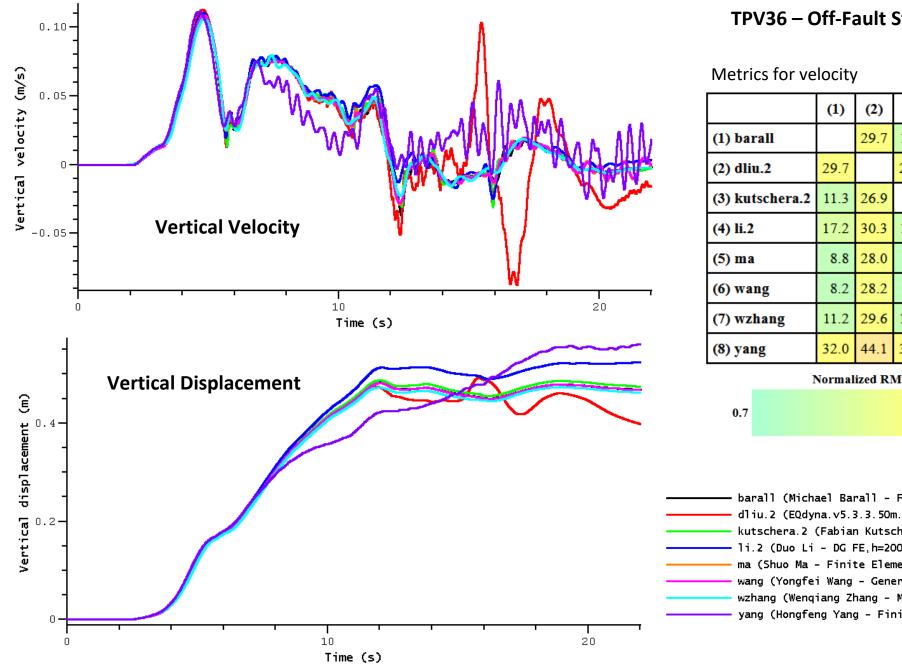
TPV36 – Off-Fault Station: body090st000dp000

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		28.7	4.0	9.3	2.0	2.0	3.4	27.8
(2) dliu.2	28.7		29.3	31.0	28.7	28.7	28.1	34.7
(3) kutschera.2	4.0	29.3		8.2	3.4	3.6	4.5	28.9
(4) li.2	9.3	31.0	8.2		9.2	9.0	9.9	32.8
(5) ma	2.0	28.7	3.4	9.2		0.5	2.9	27.5
(6) wang	2.0	28.7	3.6	9.0	0.5		2.8	27.4
(7) wzhang	3.4	28.1	4.5	9.9	2.9	2.8		26.1
(8) yang	27.8	34.7	28.9	32.8	27.5	27.4	26.1	

Normalized RMS difference (percent)


TPV37 – Off-Fault Station: body090st000dp000

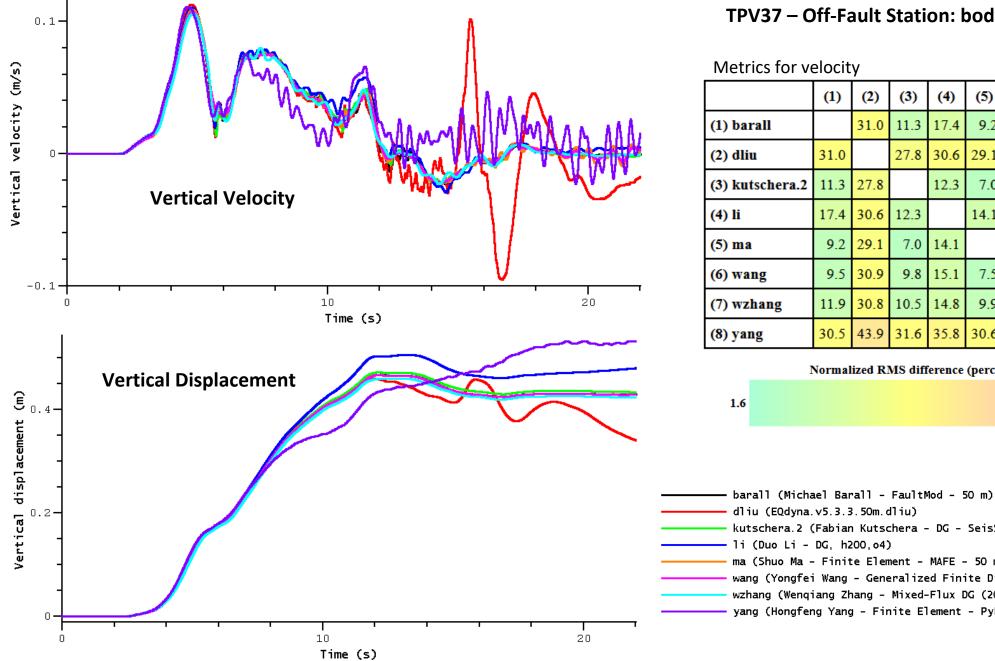
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		16.4	3.7	10.2	2.0	3.3	3.2	27.8
(2) dliu	16.4		16 .5	19.4	16.3	16 .7	16.1	31.3
(3) kutschera.2	3.7	16 .5		8.8	3.6	4.6	4.6	28.9
(4) li	10.2	19.4	8.8		10.2	10.4	11.3	33.7
(5) ma	2.0	16.3	3.6	10.2		2.8	3.0	27.6
(6) wang	3.3	16 .7	4.6	10.4	2.8		3.2	27.6
(7) wzhang	3.2	16.1	4.6	11.3	3.0	3.2		26 .5
(8) yang	27.8	31.3	28.9	33.7	27. 6	27. 6	2 6 .5	


Normalized RMS difference (percent)

5 **81.8**

———— barall (Michael Barall - FaultMod - 50 m)
dliu (EQdyna.v5.3.3.50m.dliu)
kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4)
——————————————————————————————————————
ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)
wang (Yongfei Wang - Generalized Finite Difference - SORD)
wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, 04))
yang (Hongfeng Yang - Finite Element - PyLith)

Distance along-strike = \mathbf{x}

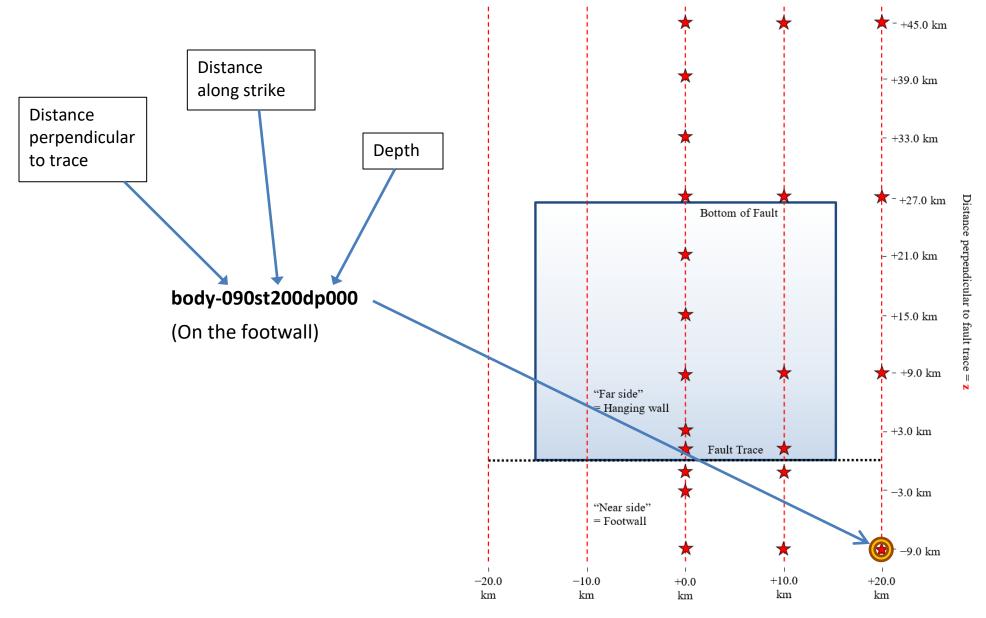


TPV36 – Off-Fault Station: body270st000dp000

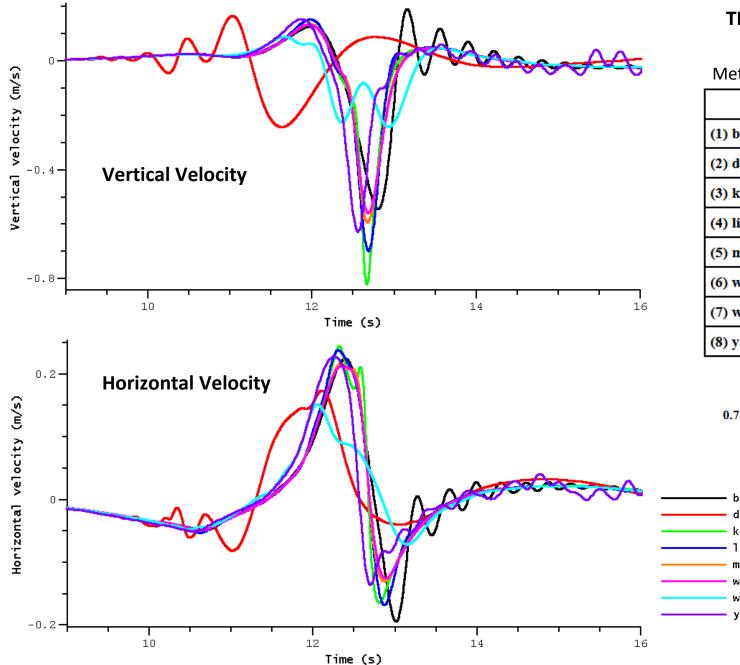
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		2 9 .7	11.3	17.2	8.8	8.2	11.2	32.0
(2) dliu.2	2 9 .7		26.9	30.3	28.0	28.2	29.6	44.1
(3) kutschera.2	11.3	26.9		11.8	7.0	7.1	10.2	33.5
(4) li.2	17.2	30.3	11.8		14.1	14.0	15.0	36.8
(5) ma	8.8	28.0	7.0	14.1		1.7	9.4	32.2
(6) wang	8.2	28.2	7.1	14.0	1.7		8.3	31.9
(7) wzhang	11.2	29.6	10.2	15.0	9.4	8.3		31.3
(8) yang	32.0	44.1	33.5	36.8	32.2	31.9	31.3	
	Vormal	ized RI	MS diff	erence	(nerce)	nt)		

Normalized RMS difference (percent)

- barall (Michael Barall FaultMod 50 m) dliu.2 (EQdyna.v5.3.3.50m.dliu) • kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) - li.2 (Duo Li - DG FE,h=200m, 04) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault) wang (Yongfei Wang - Generalized Finite Difference - SORD)
- wzhang (Wenqiang Zhang Mixed-Flux DG (200m-10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)



TPV37 – Off-Fault Station: body270st000dp000


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		31.0	11.3	17.4	9.2	9.5	11.9	30.5
(2) dliu	31.0		27.8	30.6	29.1	30.9	30.8	43.9
(3) kutschera.2	11.3	27.8		12.3	7.0	9.8	10.5	31.6
(4) li	17.4	30.6	12.3		14.1	15.1	14.8	35.8
(5) ma	9.2	29.1	7.0	14.1		7.5	9.9	30.6
(6) wang	9.5	30.9	9.8	15.1	7.5		6 .5	29.5
(7) wzhang	11.9	30.8	10.5	14.8	9.9	6.5		29.5
(8) yang	30.5	43.9	31.6	35.8	30.6	2 9 .5	2 9 .5	

Normalized RMS difference (percent)

- dliu (EQdyna.v5.3.3.50m.dliu) • kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) - li (Duo Li - DG, h200,o4)
- ma (Shuo Ma Finite Element MAFE 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
- wzhang (Wenqiang Zhang Mixed-Flux DG (200m-10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)

Distance along-strike = x

TPV36 – Off-Fault Station: body-090st200dp000

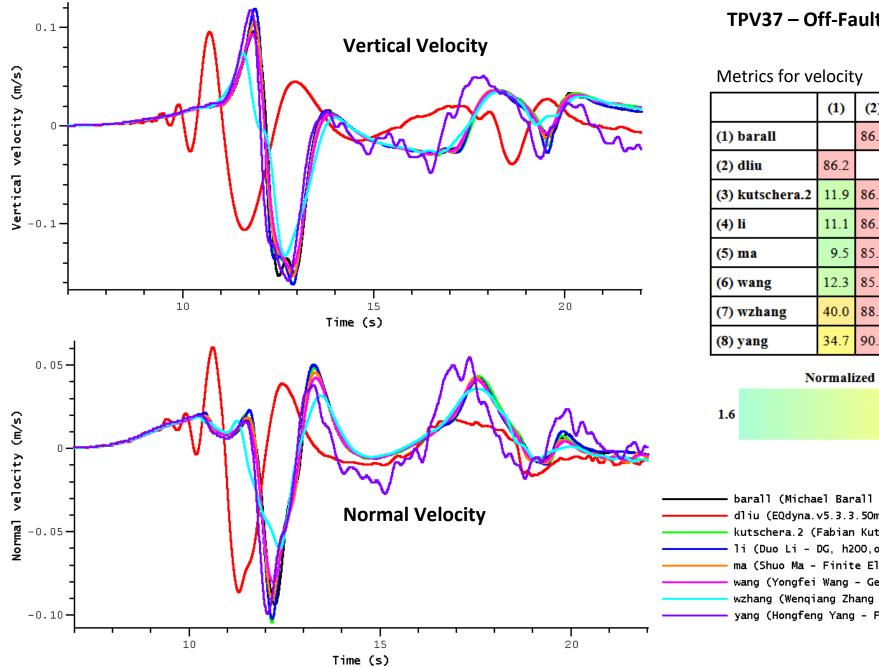
Metrics for velocity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		97.8	38.0	30.0	31.8	31.1	86.6	41.6
(2) dliu.2	97.8		99.1	97.8	94.1	92.9	96 .2	95.2
(3) kutschera.2	38.0	99.1		14.7	20.1	24.1	94.0	30.5
(4) li.2	30.0	97.8	14.7		14.9	18.2	92.3	27.1
(5) ma	31.8	94.1	20.1	14.9		4.8	85.5	25.0
(6) wang	31.1	92.9	24.1	18.2	4.8		83.4	25. 6
(7) wzhang	86.6	96 .2	94.0	92.3	85.5	83.4		91.0
(8) yang	41.6	95.2	30.5	27.1	25.0	25. 6	91.0	

Normalized RMS difference (percent)

0.7 83.9

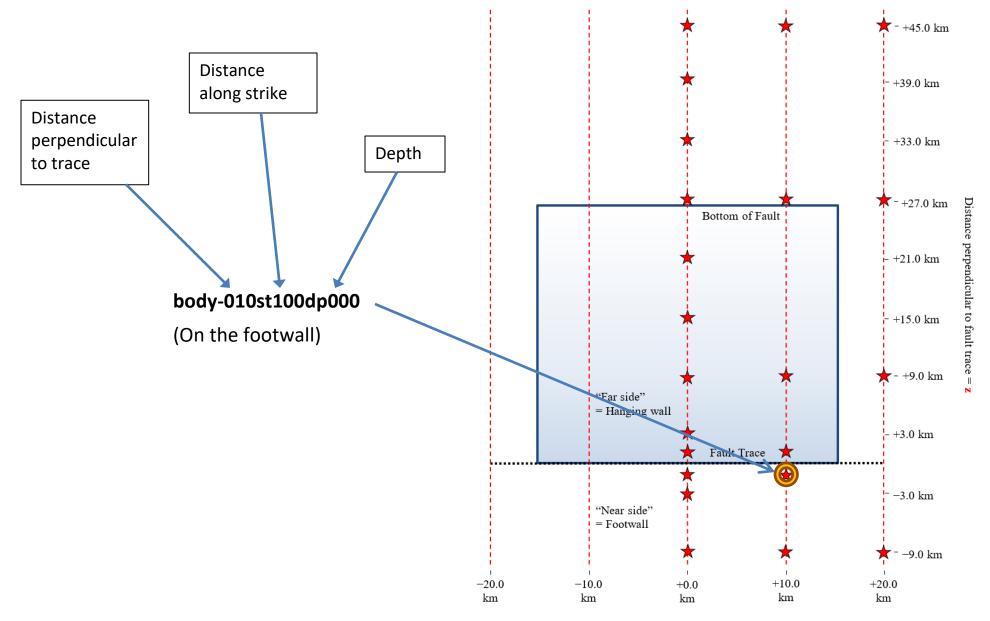
barall (Michael Barall - FaultMod - 50 m) dliu.2 (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) li.2 (Duo Li - DG FE,h=200m, 04) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault) wang (Yongfei Wang - Generalized Finite Difference - SORD) wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, 04)) yang (Hongfeng Yang - Finite Element - PyLith)

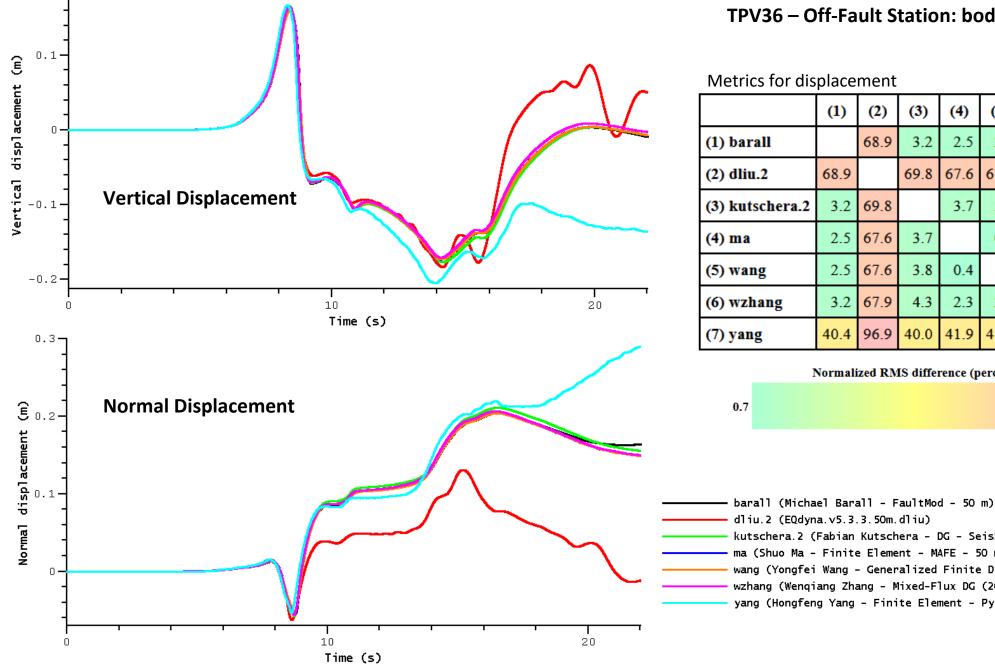

TPV36 – Off-Fault Station: body-090st200dp000

Metrics for time shift

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		0.932	0.080	0.080	0.060	0.056	-0.102	0.196
(2) dliu.2	-0.932		-0.904	-0.900	-0.910	-0.910	-0.778	-0.788
(3) kutschera.2	-0.080	0.904		0.000	-0.004	-0.008	-0.174	0.126
(4) li.2	-0.080	0.900	-0.000		-0.008	-0.012	-0.178	0.126
(5) ma	-0.060	0.910	0.004	0.008		-0.002	-0.152	0.132
(6) wang	-0.056	0.910	0.008	0.012	0.002		-0.142	0.134
(7) wzhang	0.102	0.778	0.174	0.178	0.152	0.142		-0.108
(8) yang	-0.196	0.788	-0.126	-0.126	-0.132	-0.134	0.108	

Time shift (s)

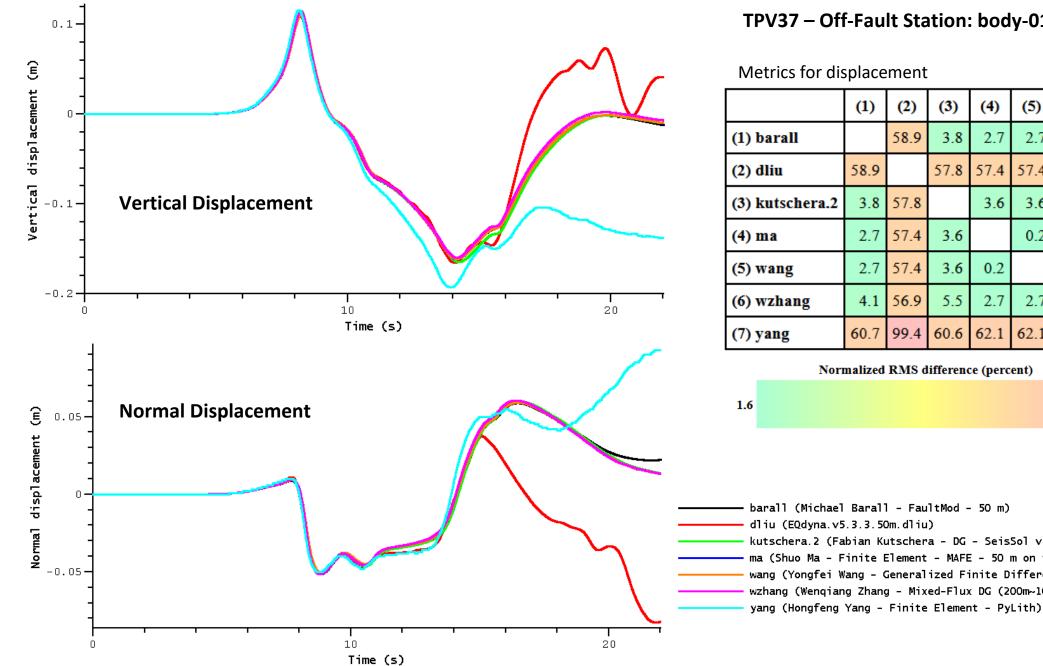

- barall (Michael Barall - FaultMod - 50 m)
- dliu.2 (EQdyna.v5.3.3.50m.dliu)
- kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4)
- li.2 (Duo Li - DG FE.h=200m, 04)
- ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)
- wang (Yongfei Wang - Generalized Finite Difference - SORD)
- wzhang (Wengiang Zhang - Mixed-Flux DG (200m~10km, 04))
- yang (Hongfeng Yang - Finite Element - PyLith)
,


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		86.2	11.9	11.1	9.5	12.3	40.0	34.7
(2) dliu	86.2		86.3	86.4	85.6	85.1	88.8	90.6
(3) kutschera.2	11.9	86.3		5.9	8.9	16.0	46.0	36.4
(4) li	11.1	86.4	5.9		10.1	17.0	47.1	33.8
(5) ma	9.5	85.6	8.9	10.1		8.0	39.1	35.0
(6) wang	12.3	85.1	16.0	17.0	8.0		31.7	37.3
(7) wzhang	40.0	88.8	46.0	47.1	39.1	31.7		5 6 .7
(8) yang	34.7	90.6	36.4	33.8	35.0	37.3	5 6 .7	

Normalized RMS difference (percent)

—— barall (Michael Barall - FaultMod - 50 m)	
dliu (EQdyna.v5.3.3.50m.dliu)	
wutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4)
—— li (Duo Li - DG, h200,o4)	
—— ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)	
ma (Shuo Ma - Finite Etement - MAFE - 50 m on fault)	
——— wang (Yongfei Wang - Generalized Finite Difference - SORD)	
• • • •	
wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, 04))	

Distance along-strike = x

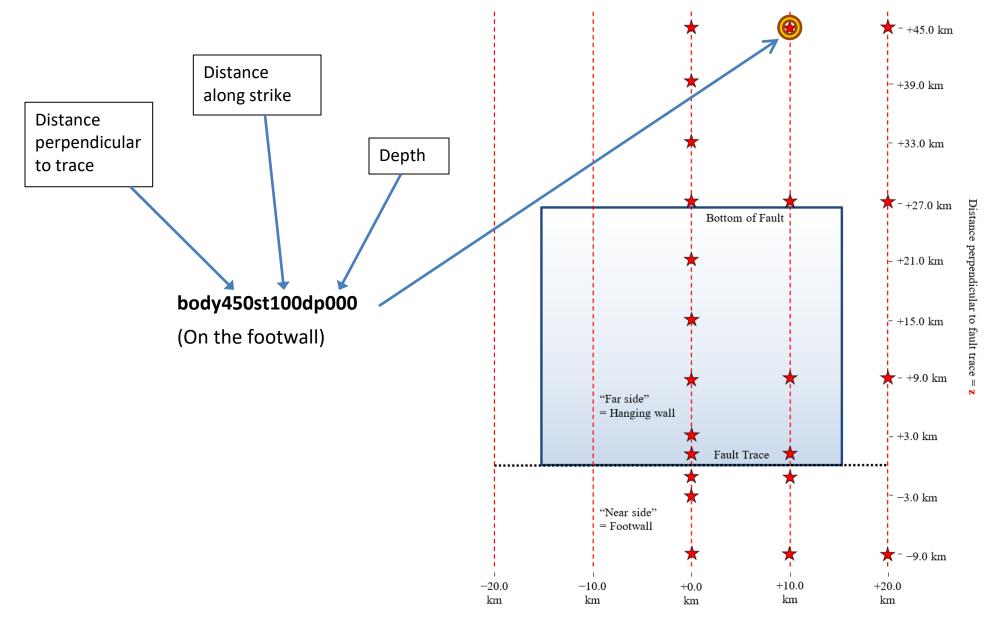


TPV36 – Off-Fault Station: body-010st100dp000

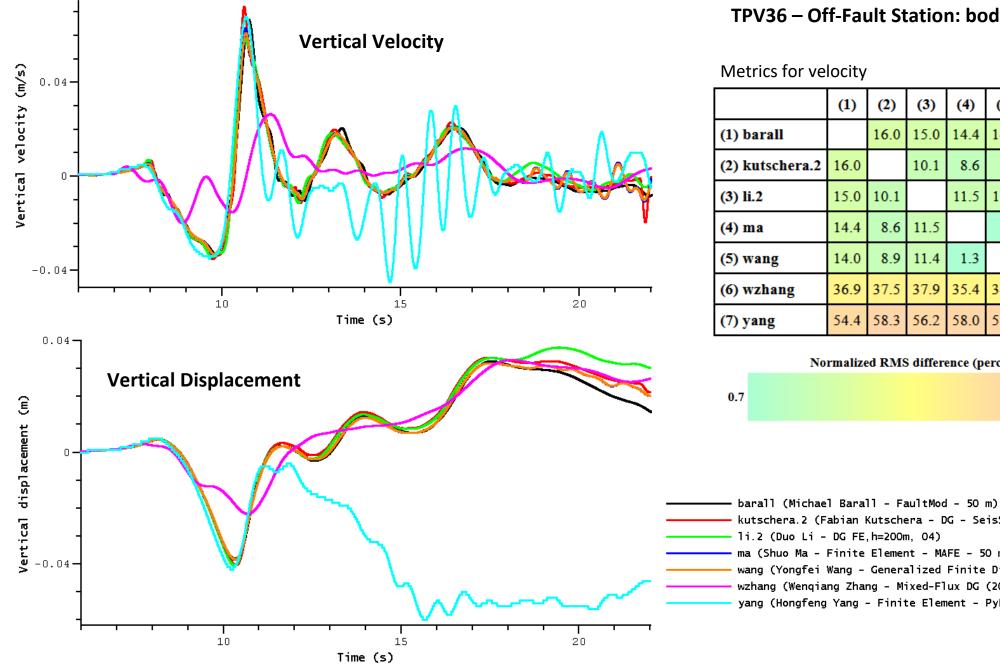
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1) barall		68.9	3.2	2.5	2.5	3.2	40.4
(2) dliu.2	68.9		69.8	6 7.6	67.6	6 7.9	96.9
(3) kutschera.2	3.2	69.8		3.7	3.8	4.3	40.0
(4) ma	2.5	6 7.6	3.7		0.4	2.3	41.9
(5) wang	2.5	6 7.6	3.8	0.4		2.4	41.9
(6) wzhang	3.2	6 7.9	4.3	2.3	2.4		43.1
(7) yang	40.4	96.9	40.0	41.9	41.9	43.1	

Normalized RMS difference (percent)

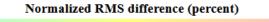
- dliu.2 (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
- wzhang (Wenqiang Zhang Mixed-Flux DG (200m~10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)


TPV37 – Off-Fault Station: body-010st100dp000

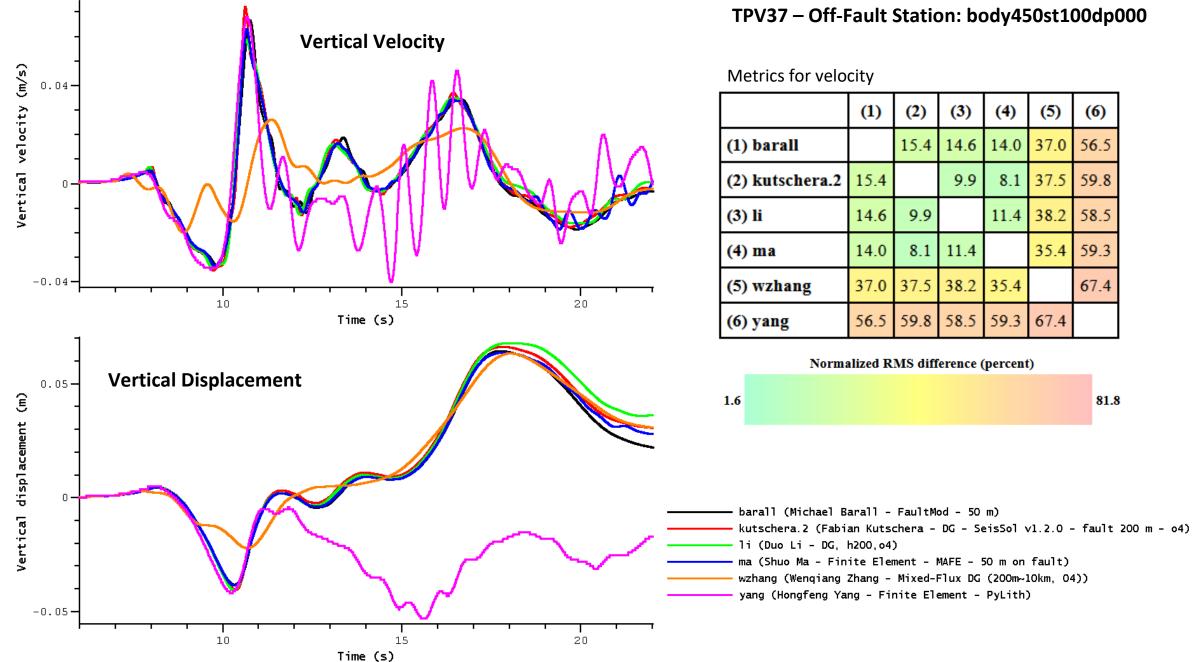
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1) barall		58.9	3.8	2.7	2.7	4.1	60 .7
(2) dliu	58.9		57. 8	57.4	57.4	56.9	99.4
(3) kutschera.2	3.8	57.8		3.6	3.6	5.5	60.6
(4) ma	2.7	57.4	3.6		0.2	2.7	6 2.1
(5) wang	2.7	57.4	3.6	0.2		2.7	62.1
(6) wzhang	4.1	56.9	5.5	2.7	2.7		64.1
(7) yang	60 .7	99.4	60.6	62.1	62.1	64.1	


Normalized RMS difference (percent)

81.8


kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault) wang (Yongfei Wang - Generalized Finite Difference - SORD) wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, 04))

Distance along-strike = x


	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1) barall		16.0	15.0	14.4	14.0	36.9	54.4
(2) kutschera.2	16.0		10.1	8.6	8.9	37.5	58.3
(3) li.2	15.0	10.1		11.5	11.4	37.9	5 6 .2
(4) ma	14.4	8.6	11.5		1.3	35.4	58.0
(5) wang	14.0	8.9	11.4	1.3		34.9	57. 9
(6) wzhang	36.9	37.5	37.9	35.4	34.9		66.2
(7) yang	54.4	58.3	5 6 .2	58.0	57. 9	66.2	

83.9

kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4)

- ma (Shuo Ma Finite Element MAFE 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
- wzhang (Wenqiang Zhang Mixed-Flux DG (200m~10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)

	(1)	(2)	(3)	(4)	(5)	(6)
(1) barall		15.4	14.6	14.0	37.0	5 6 .5
(2) kutschera.2	15.4		9.9	8.1	37.5	59.8
(3) li	14.6	9.9		11.4	38.2	58.5
(4) ma	14.0	8.1	11.4		35.4	59.3
(5) wzhang	37.0	37.5	38.2	35.4		67.4
(6) yang	5 6 .5	5 <mark>9.8</mark>	5 8 .5	59.3	67.4	

Normalized RMS difference (percent)

81.8

36

On-Fault Stations: Time Series Data

Metric Comparison for Each Pair of Users: Summary Across All On-Fault Stations

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		<u>41.9</u>	<u>5.5</u>	<u>15.8</u>	<u>2.6</u>	<u>4.3</u>	<u>3.1</u>	<u>17.3</u>
(2) dliu.2	<u>41.9</u>		<u>43.7</u>	<u>55.5</u>	<u>41.3</u>	<u>41.6</u>	<u>41.5</u>	<u>47.0</u>
(3) kutschera.	2 <u>5.5</u>	<u>43.7</u>		<u>15.4</u>	<u>5.6</u>	<u>7.2</u>	<u>5.3</u>	<u>19.5</u>
(4) li.2	<u>15.8</u>	<u>55.5</u>	<u>15.4</u>		<u>15.8</u>	<u>17.0</u>	<u>15.5</u>	<u>25.8</u>
(5) ma	<u>2.6</u>	<u>41.3</u>	<u>5.6</u>	<u>15.8</u>		<u>2.4</u>	<u>2.4</u>	<u>16.5</u>
(6) wang	<u>4.3</u>	<u>41.6</u>	<u>7.2</u>	<u>17.0</u>	<u>2.4</u>		<u>3.6</u>	<u>17.1</u>
(7) wzhang	<u>3.1</u>	<u>41.5</u>	<u>5.3</u>	<u>15.5</u>	<u>2.4</u>	<u>3.6</u>		<u>16.7</u>
(8) yang	<u>17.3</u>	<u>47.0</u>	<u>19.5</u>	<u>25.8</u>	<u>16.5</u>	<u>17.1</u>	<u>16.7</u>	
	-		Users					
(1) barall	Michael 1	Barall -	FaultN	/lod - 5	0 m			
(2) dliu.2	EQdyna.v	v5.3.3.	50m.dli	u				
(3) kutschera.2	Fabian K	utscher	ra - DG	- Seis	Sol v1.2	2.0 - fa	ult 200	m - 04
(4) li.2	Duo Li - DG FE,h=200m, O4							
(5) ma	Shuo Ma - Finite Element - MAFE - 50 m on fault							
(6) wang	Yongfei V	Wang -	Genera	lized F	inite D	oifferen	ce - SC	ORD
(7) wzhang	Wenqian	g Zhang	g - Mix	ed-Flu	x DG (200m~	10km,	04)

Hongfeng Yang - Finite Element - PyLith

(8) yang

TPV37

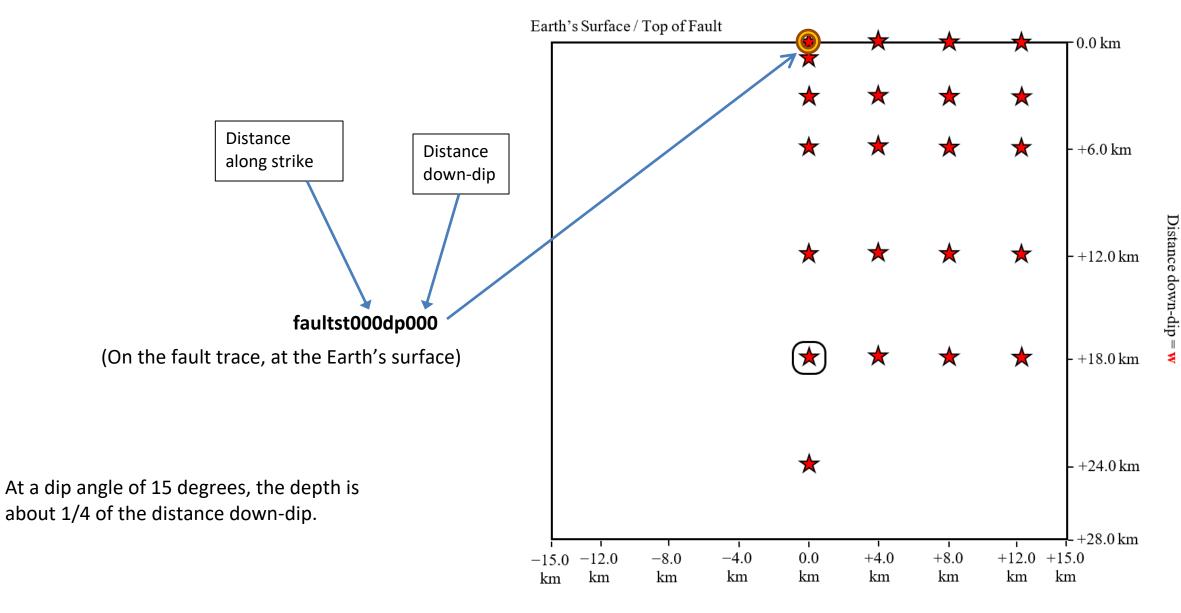
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		<u>6.9</u>	<u>4.7</u>	<u>14.7</u>	<u>1.6</u>	<u>3.6</u>	<u>2.7</u>	<u>18.3</u>
(2) dliu	<u>6.9</u>		<u>7.6</u>	<u>18.3</u>	<u>6.6</u>	<u>7.4</u>	<u>6.5</u>	<u>21.2</u>
(3) kutschera.2	<u>4.7</u>	<u>7.6</u>		<u>13.0</u>	<u>5.0</u>	<u>6.7</u>	<u>4.8</u>	<u>20.9</u>
(4) li	<u>14.7</u>	<u>18.3</u>	<u>13.0</u>		<u>15.0</u>	<u>16.1</u>	<u>14.8</u>	<u>27.2</u>
(5) ma	<u>1.6</u>	<u>6.6</u>	<u>5.0</u>	<u>15.0</u>		<u>2.7</u>	<u>2.4</u>	<u>18.2</u>
(6) wang	<u>3.6</u>	<u>7.4</u>	<u>6.7</u>	<u>16.1</u>	<u>2.7</u>		<u>3.4</u>	<u>18.7</u>
(7) wzhang	<u>2.7</u>	<u>6.5</u>	<u>4.8</u>	<u>14.8</u>	<u>2.4</u>	<u>3.4</u>		<u>18.5</u>
(8) yang	<u>18.3</u>	<u>21.2</u>	<u>20.9</u>	<u>27.2</u>	<u>18.2</u>	<u>18.7</u>	<u>18.5</u>	
			Users					

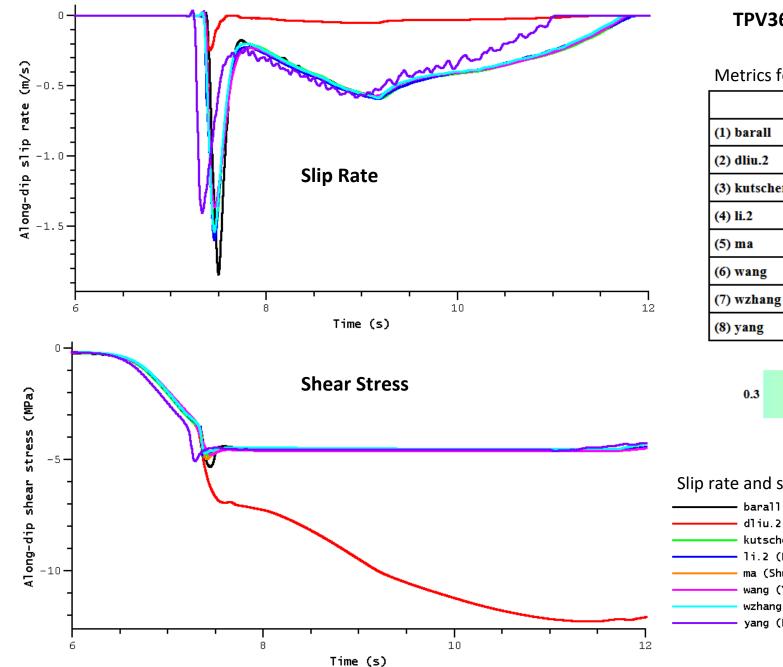
	Users
(1) barall	Michael Barall - FaultMod - 50 m
(2) dliu	EQdyna.v5.3.3.50m.dliu
(3) kutschera.2	Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4
(4) li	Duo Li - DG, h200,o4
(5) ma	Shuo Ma - Finite Element - MAFE - 50 m on fault
(6) wang	Yongfei Wang - Generalized Finite Difference - SORD
(7) wzhang	Wenqiang Zhang - Mixed-Flux DG (200m~10km, O4)
(8) yang	Hongfeng Yang - Finite Element - PyLith

The metric for two time series is the RMS difference between them, normalized to the range 0 to 200.

- Lower numbers are better; 0 is a perfect match, and values about 10 or less are a good match.
- We apply an optimum relative time shift when comparing, allowing for differences in propagation speed.

Metric Comparison for Each On-Fault Station: Summary Across All Users


TPV36


				-			
	2d-stress	2d-rate	2d-slip	t-shift			
faultst000dp000	<u>30.3</u>	<u>50.2</u>	<u>46.1</u>	0.047	+ (On Trac	e
faultst000dp010	<u>7.6</u>	<u>17.9</u>	<u>16.2</u>	0.043			
faultst000dp030	<u>21.2</u>	<u>12.1</u>	<u>8.5</u>	0.032			
faultst000dp060	<u>36.8</u>	<u>10.6</u>	<u>6.1</u>	0.029			
faultst000dp120	<u>19.1</u>	<u>7.5</u>	<u>3.5</u>	0.022			
faultst000dp180	<u>47.2</u>	<u>10.7</u>	<u>5.2</u>	0.085			
faultst000dp240	<u>23.8</u>	<u>14.5</u>	<u>11.8</u>	0.032			
faultst040dp000	<u>30.0</u>	<u>51.7</u>	<u>46.0</u>	0.052	+		
faultst040dp030	<u>19.6</u>	<u>11.3</u>	<u>8.1</u>	0.035			
faultst040dp060	<u>33.6</u>	<u>8.6</u>	<u>5.3</u>	0.034			
faultst040dp120	<u>17.0</u>	<u>6.5</u>	<u>2.7</u>	0.032			
faultst040dp180	<u>39.9</u>	<u>9.9</u>	<u>9.1</u>	0.029			
faultst080dp000	<u>27.6</u>	<u>52.5</u>	<u>45.4</u>	0.059	+		
faultst080dp030	<u>33.8</u>	<u>8.3</u>	<u>5.8</u>	0.041			
faultst080dp060	<u>16.9</u>	<u>5.9</u>	<u>2.5</u>	0.040			
faultst080dp120	<u>9.5</u>	<u>8.0</u>	<u>3.4</u>	0.039			Fields
faultst080dp180	<u>10.1</u>	<u>10.7</u>	<u>3.6</u>	0.042		2d-stress	Shear stre
faultst120dp000	<u>23.2</u>	<u>54.7</u>	<u>44.9</u>	0.066	+	2d-rate	Slip rate
faultst120dp030	<u>11.0</u>	<u>4.9</u>	<u>2.7</u>	0.048		2d-slip	Slip vecto
faultst120dp060	<u>8.1</u>	<u>4.3</u>	<u>1.8</u>	0.041		t-shift	Time shit
faultst120dp120	<u>34.5</u>	<u>10.7</u>	<u>7.1</u>	0.049			
faultst120dp180	<u>15.7</u>	<u>18.7</u>	<u>7.2</u>	0.054			

			2d-stress	2d-rate	2d-slip	t-shift
С	е	faultst000dp000	<u>14.9</u>			0.045
		faultst000dp010	<u>9.1</u>			0.062
		faultst000dp030	<u>11.7</u>			0.362
		faultst000dp060	<u>28.7</u>	<u>10.6</u>	<u>6.9</u>	0.026
		faultst000dp120	<u>9.9</u>	<u>6.8</u>	<u>3.3</u>	0.019
		faultst000dp180	<u>31.7</u>	<u>8.8</u>	<u>4.4</u>	0.048
		faultst000dp240	<u>16.6</u>	<u>14.7</u>	<u>9.9</u>	0.032
		faultst040dp000	<u>14.5</u>			0.048
		faultst040dp030	<u>9.7</u>			<u>0.175</u>
		faultst040dp060	<u>21.4</u>	<u>6.6</u>	<u>3.2</u>	0.028
		faultst040dp120	<u>10.2</u>	<u>6.1</u>	<u>2.4</u>	0.031
		faultst040dp180	<u>43.3</u>	<u>8.9</u>	<u>8.9</u>	0.026
		faultst080dp000	<u>13.7</u>			0.050
		faultst080dp030	<u>7.3</u>			0.069
		faultst080dp060	<u>12.0</u>	<u>5.0</u>	<u>2.2</u>	0.035
	Fields	faultst080dp120	<u>9.9</u>	<u>7.1</u>	<u>2.7</u>	0.038
s	Shear stress vector	faultst080dp180	<u>10.1</u>	<u>9.8</u>	<u>2.6</u>	0.042
	Slip rate vector	faultst120dp000	<u>15.0</u>			0.060
	Slip vector	faultst120dp030	<u>6.5</u>			0.054
	Time shift	faultst120dp060	<u>10.7</u>	<u>4.0</u>	<u>1.5</u>	0.041
		faultst120dp120	<u>23.4</u>	<u>10.1</u>	<u>3.2</u>	0.050
		faultst120dp180	<u>11.3</u>	<u>18.1</u>	<u>6.3</u>	0.054

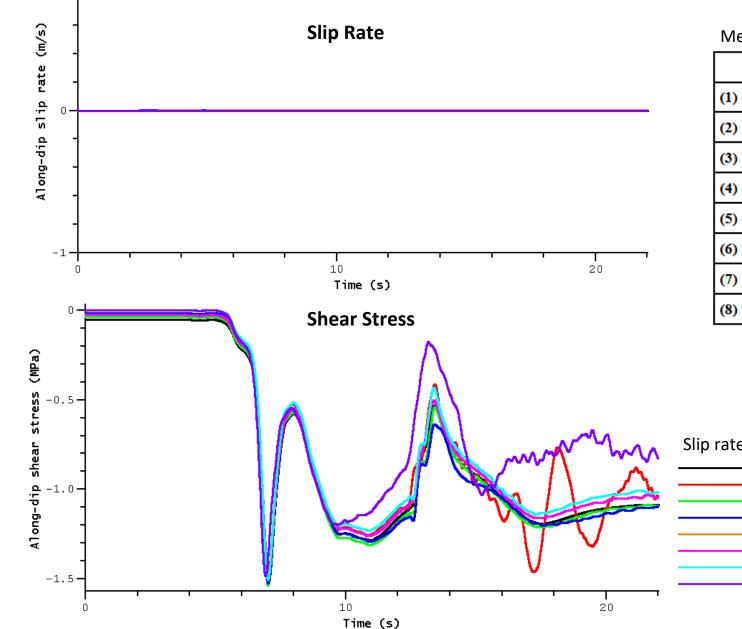
TPV37

On-	Fault Stations								
faultst000dp000	strike 0.0 km, dip 0.0 km								
faultst000dp010	strike 0.0 km, dip 1.0 km								
faultst000dp030	strike 0.0 km, dip 3.0 km								
faultst000dp060	strike 0.0 km, dip 6.0 km								
faultst000dp120	strike 0.0 km, dip 12.0 km								
faultst000dp180	strike 0.0 km, dip 18.0 km								
faultst000dp240	strike 0.0 km, dip 24.0 km								
faultst040dp000	strike 4.0 km, dip 0.0 km								
faultst040dp030	strike 4.0 km, dip 3.0 km								
faultst040dp060	strike 4.0 km, dip 6.0 km								
faultst040dp120	strike 4.0 km, dip 12.0 km								
faultst040dp180	strike 4.0 km, dip 18.0 km								
faultst080dp000	strike 8.0 km, dip 0.0 km								
faultst080dp030	strike 8.0 km, dip 3.0 km								
faultst080dp060	strike 8.0 km, dip 6.0 km								
faultst080dp120	strike 8.0 km, dip 12.0 km								
faultst080dp180	strike 8.0 km, dip 18.0 km								
faultst120dp000	strike 12.0 km, dip 0.0 km								
faultst120dp030	strike 12.0 km, dip 3.0 km								
faultst120dp060	strike 12.0 km, dip 6.0 km								
faultst120dp120	strike 12.0 km, dip 12.0 km								
faultst120dp180	strike 12.0 km, dip 18.0 km								

TPV36 – On-Fault Station: faultst000dp000

Metrics for slip rate

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		168.4	7.6	8.0	12.1	12.1	7.9	22.9
(2) dliu.2	168.4		168.4	168.7	167.8	167.8	167.6	166.2
(3) kutschera.2	7.6	168.4		4.1	8.0	8.0	5.7	22.4
(4) li.2	8.0	168.7	4.1		8.2	8.2	6.4	20.3
(5) ma	12.1	167.8	8.0	8.2		0.0	5.1	20.0
(6) wang	12.1	167.8	8.0	8.2	0.0		5.1	20.0
(7) wzhang	7.9	167.6	5.7	6.4	5.1	5.1		19.4
(8) yang	22.9	166.2	22.4	20.3	20.0	20.0	19.4	

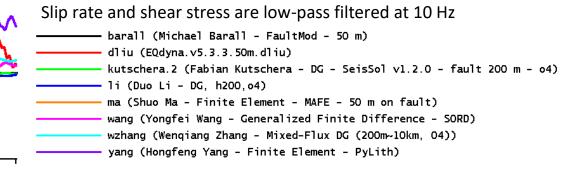

Normalized RMS difference (percent)

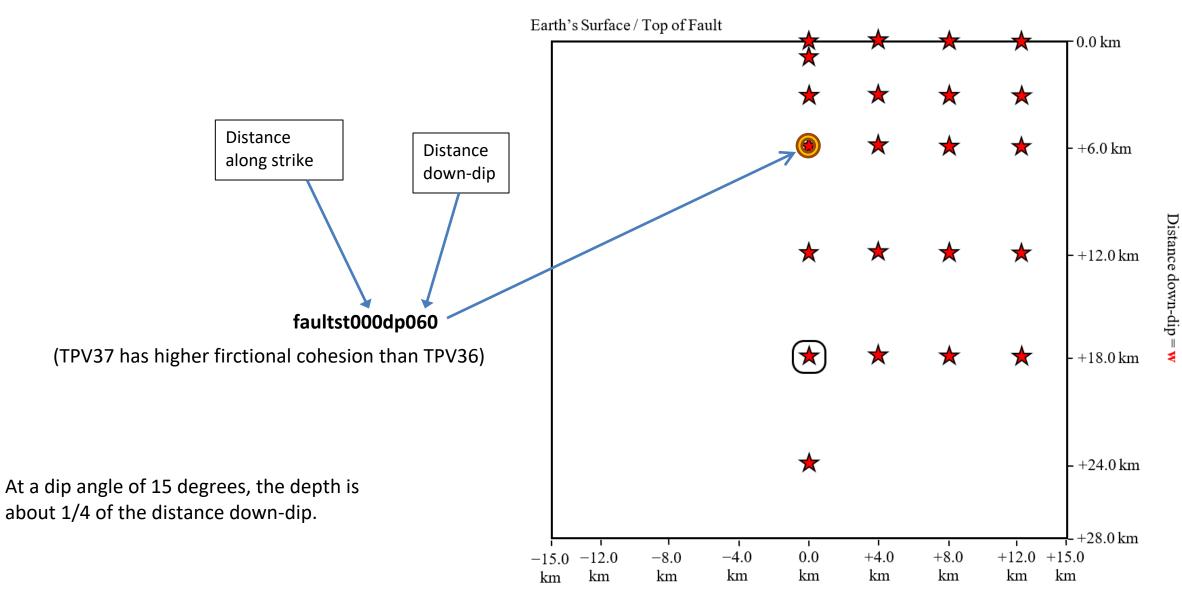
93.9

Slip rate and shear stress are low-pass filtered at 10 Hz

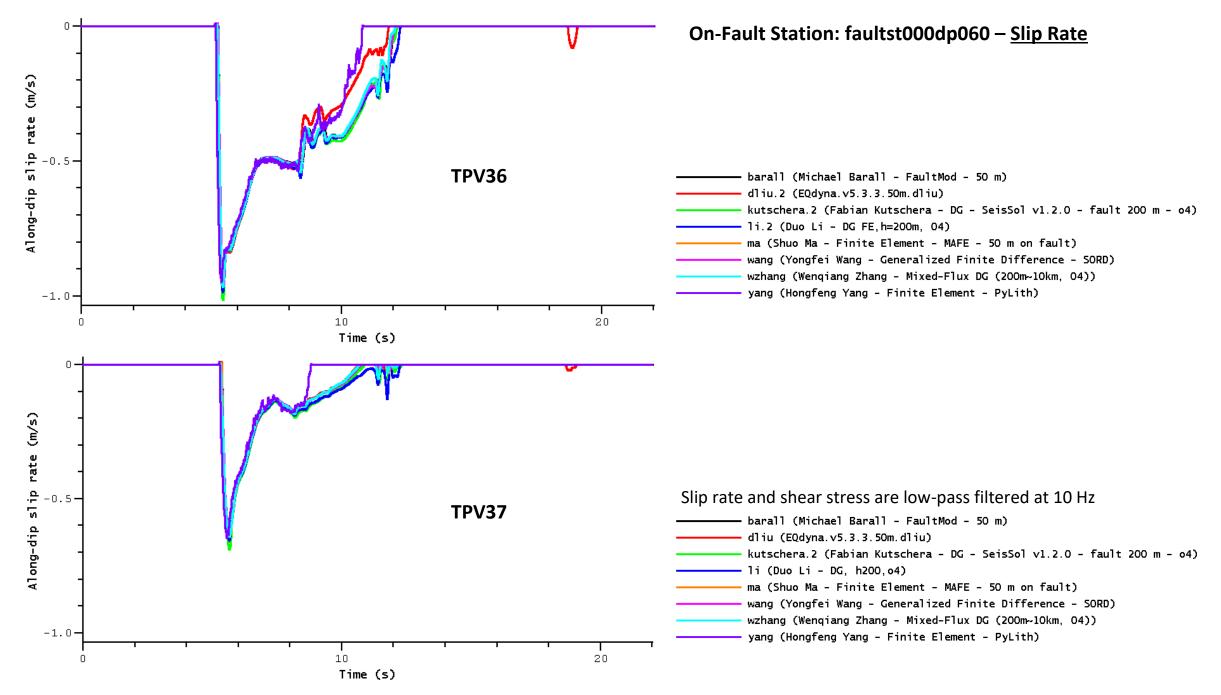
- ——— barall (Michael Barall FaultMod 50 m) ——— dliu.2 (EQdyna.v5.3.3.50m.dliu)
- kutschera.2 (Fabian Kutschera DG SeisSol v1.2.0 fault 200 m o4)
- ———— 1i.2 (Duo Li DG FE,h=200m, 04)
 - —— ma (Shuo Ma Finite Element MAFE 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
 - wzhang (Wenqiang Zhang Mixed-Flux DG (200m~10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)

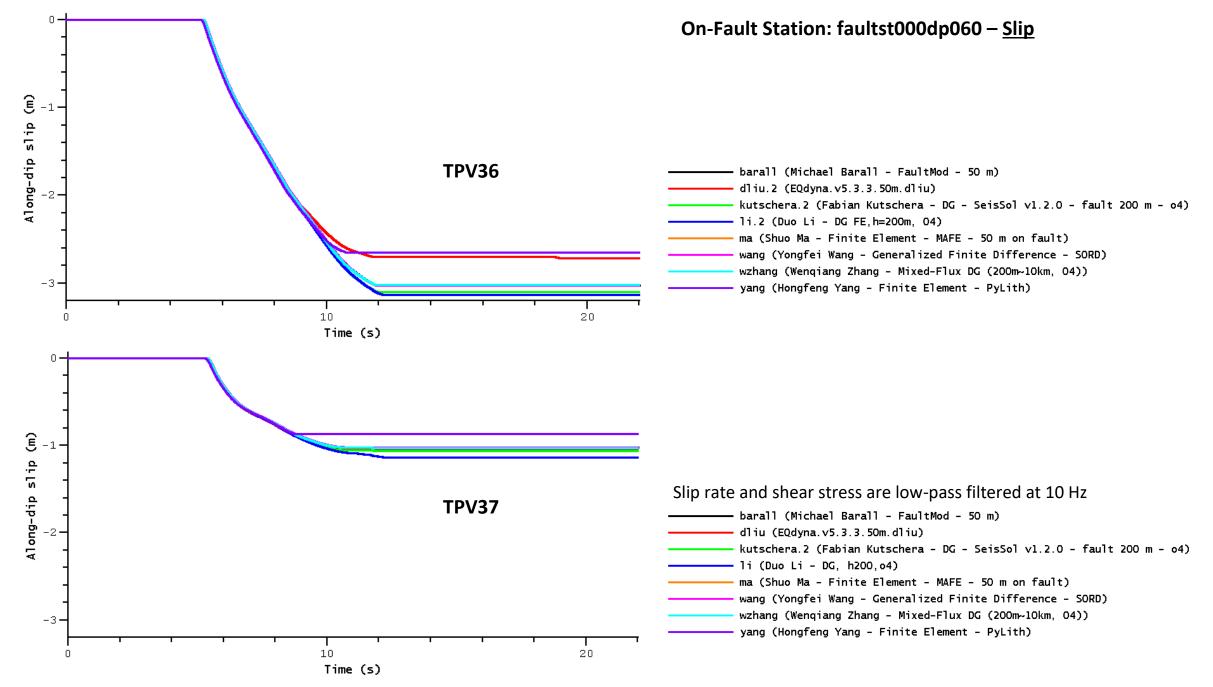
1 -

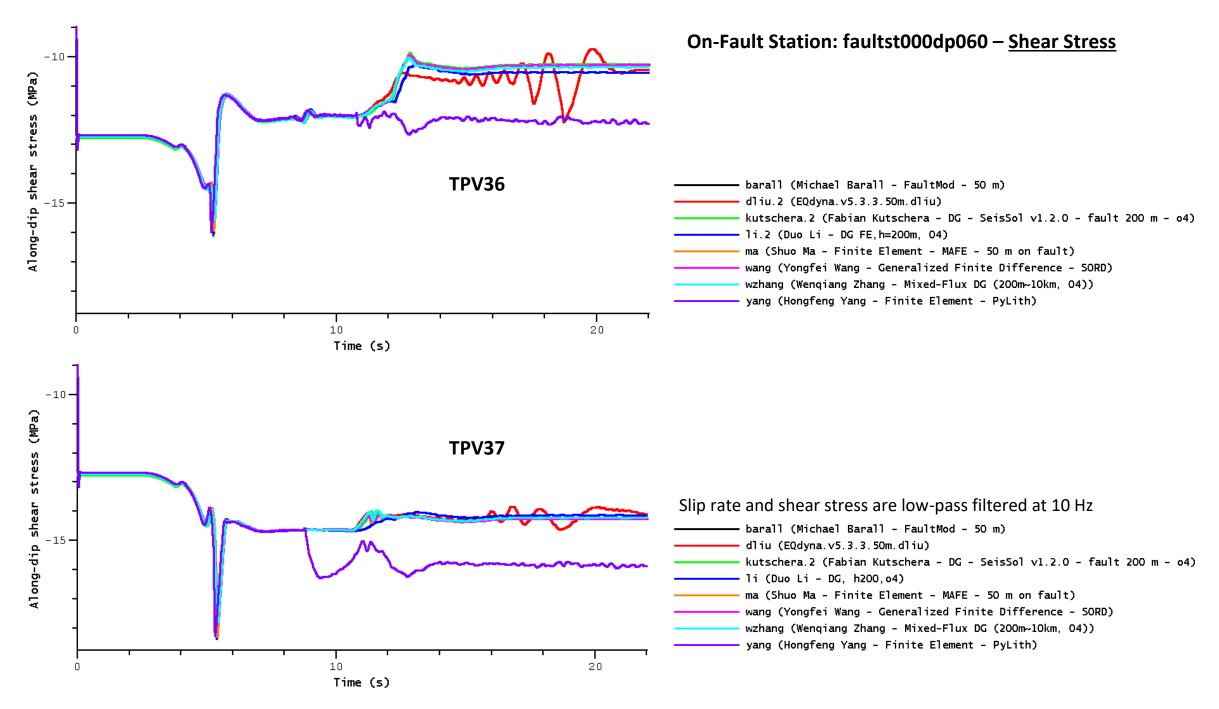

Metrics for shear stress

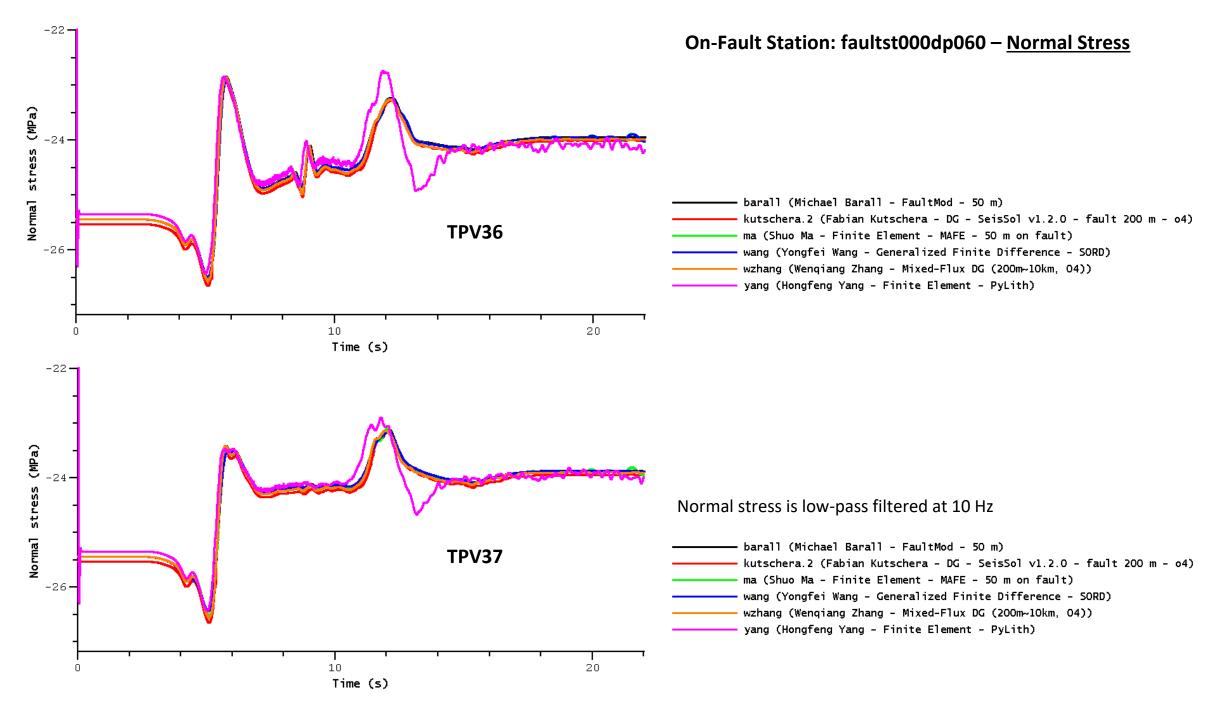

0.5

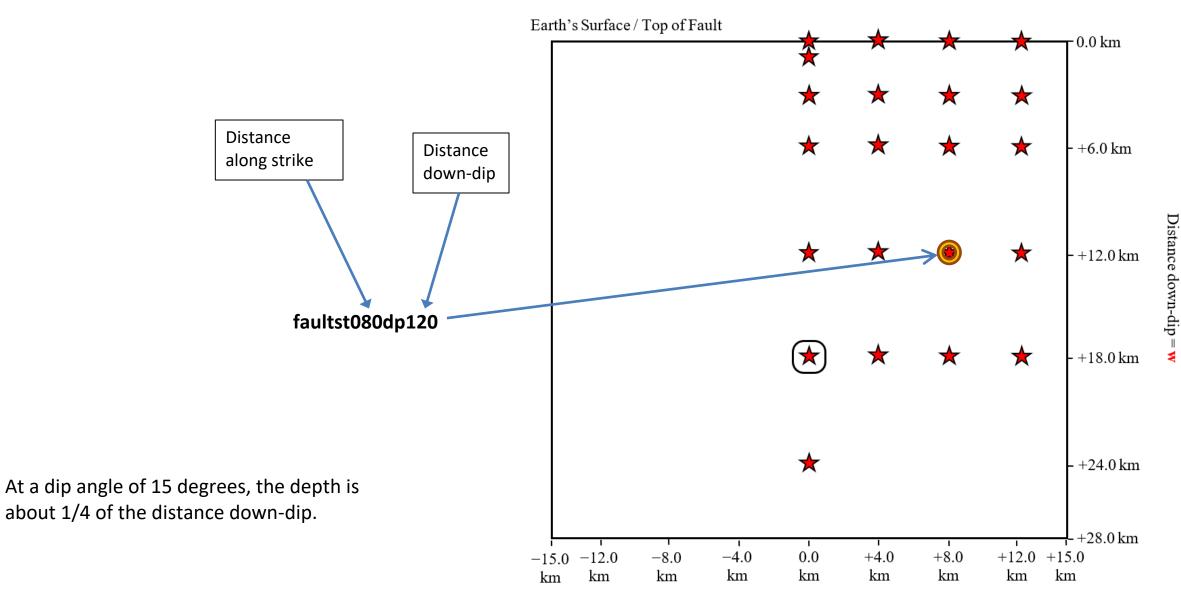
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		19.4	4.0	7.4	1.5	1.6	2.3	32.1
(2) dliu	19.4		19.2	20.2	19.3	19.3	19.1	37.5
(3) kutschera.2	4.0	19.2		5.0	4.6	4.7	4.4	34.1
(4) li	7.4	20.2	5.0		8.2	8.2	8.3	37.1
(5) ma	1.5	19.3	4.6	8.2		0.6	2.1	31.4
(6) wang	1.6	19.3	4.7	8.2	0.6		2.5	31.4
(7) wzhang	2.3	19.1	4.4	8.3	2.1	2.5		31.2
(8) yang	32.1	37.5	34.1	37.1	31.4	31.4	31.2	

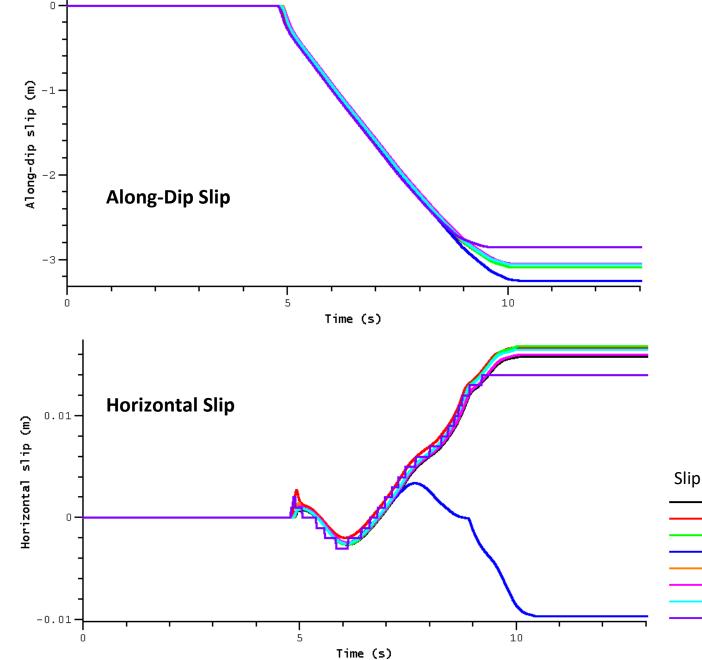

Normalized RMS difference (percent)


32.9

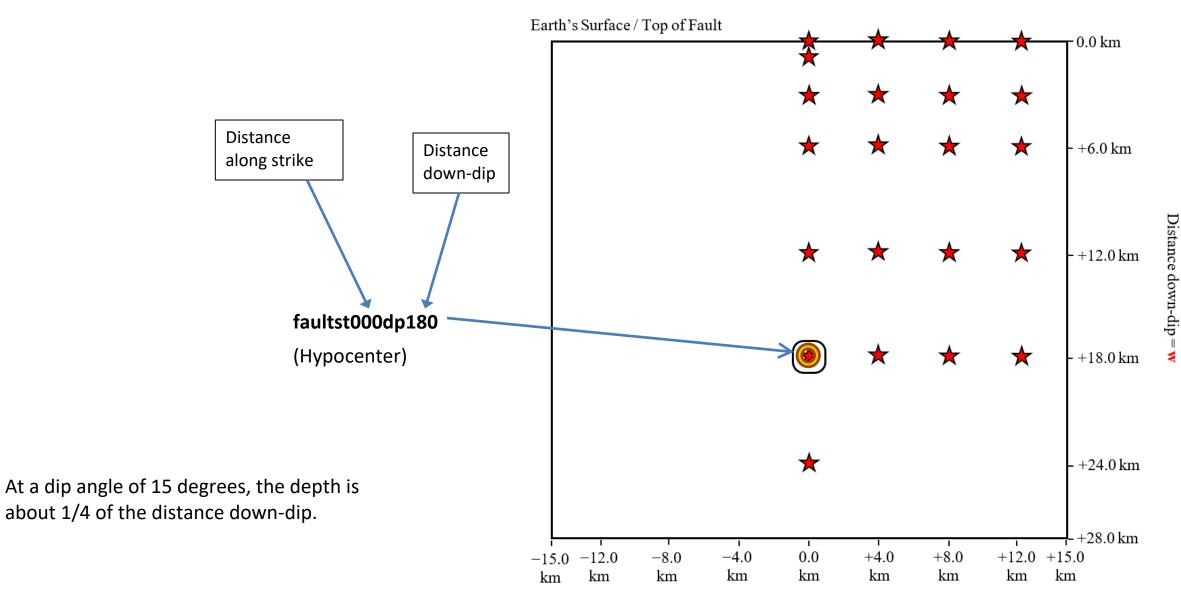


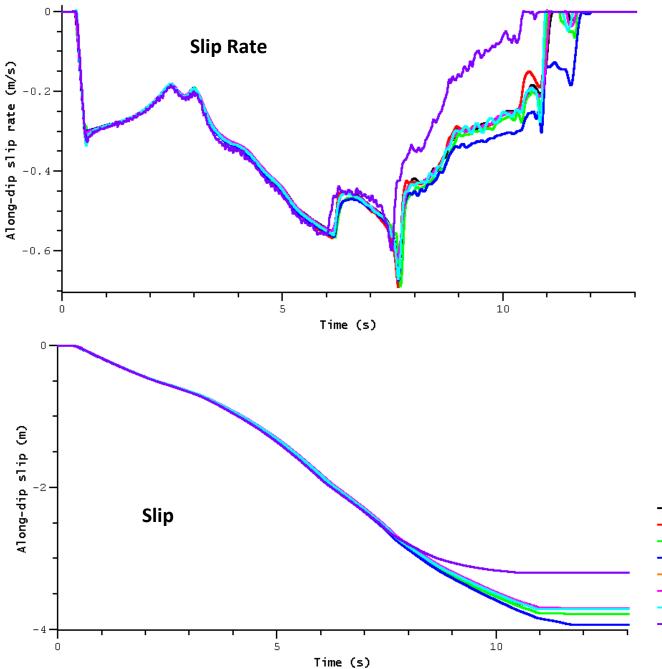



Distance along-strike = x



Metrics for slin rate


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
(1) barall		4.4	4.6	6 .7	2.4	8.4	3.8	12.7		
(2) dliu.2	4.4		7.5	9.3	3.0	5.4	3.2	11.9		
(3) kutschera.2	4.6	7.5		4.1	5.8	11.0	6.4	14.6		
(4) li.2	6 .7	9.3	4.1		7.7	12.4	8.2	17.2		
(5) ma	2.4	3.0	5.8	7.7		6 .5	2.0	12.3		
(6) wang	8.4	5.4	11.0	12.4	6.5		5.8	13.7		
(7) wzhang	3.8	3.2	6.4	8.2	2.0	5.8		12.0		
(8) yang	12.7	11.9	14.6	17.2	12.3	13.7	12.0			
1	Normalized RMS difference (percent)									


0.3

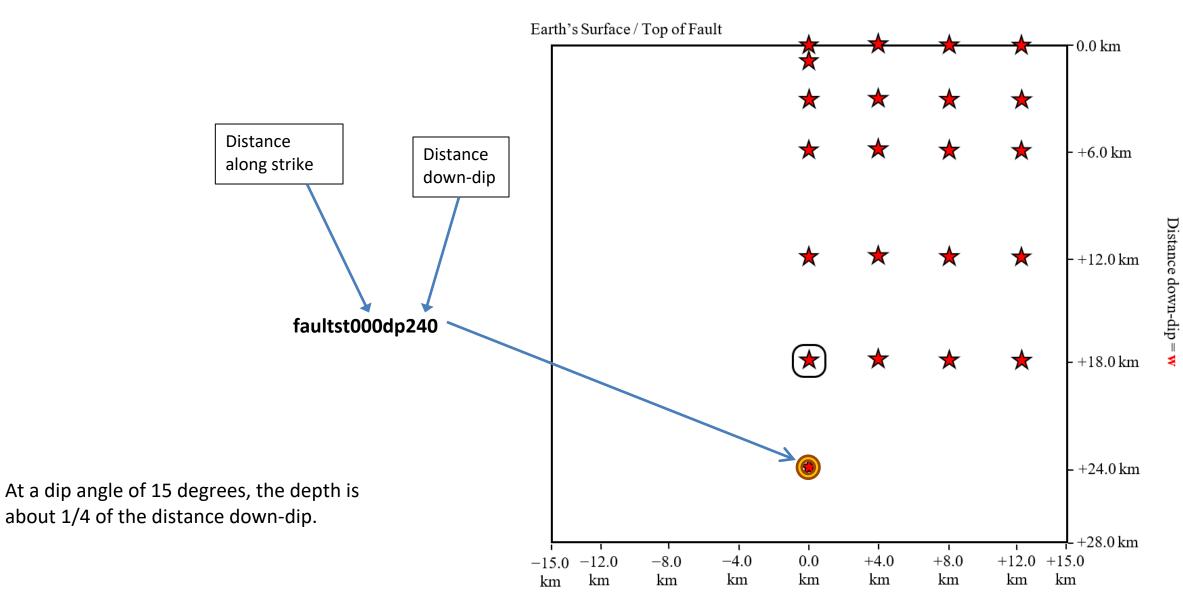
93.9

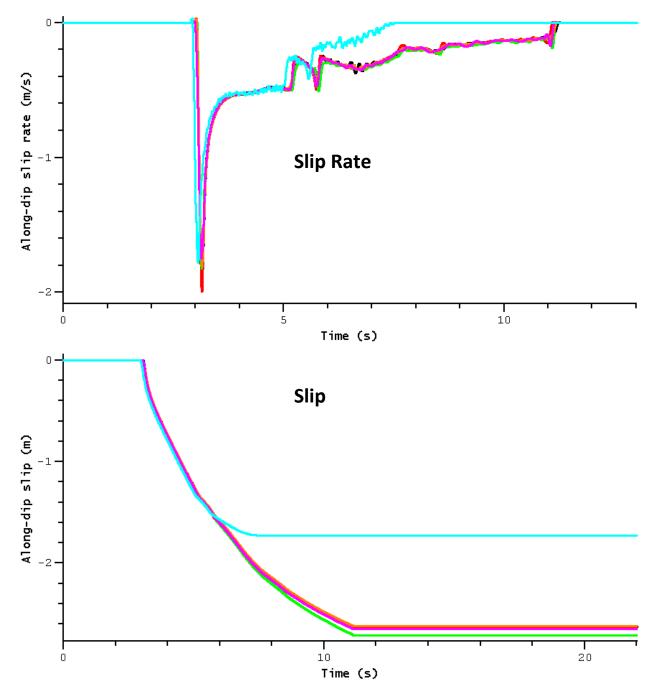
Slip rate and shear stress are low-pass filtered at 10 Hz - barall (Michael Barall - FaultMod - 50 m) dliu.2 (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) - 1i.2 (Duo Li - DG FE, h=200m, 04)

- ma (Shuo Ma Finite Element MAFE 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
 - wzhang (Wenqiang Zhang Mixed-Flux DG (200m-10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)

TPV36 – On-Fault Station: faultst000dp180

Metrics for slip rate


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
(1) barall		4.1	5.0	11.2	1.4	1.4	4.1	24.6
(2) dliu.2	4.1		5.4	12.5	3.9	3.9	3.5	23.4
(3) kutschera.2	5.0	5.4		9 .7	4.8	4.8	3.9	26.6
(4) li.2	11.2	12.5	9.7		11.0	11.0	11.2	30.6
(5) ma	1.4	3.9	4.8	11.0		0.0	3.5	24.7
(6) wang	1.4	3.9	4.8	11.0	0.0		3.5	24.7
(7) wzhang	4.1	3.5	3.9	11.2	3.5	3.5		24.8
(8) yang	24.6	23.4	26.6	30.6	24.7	24.7	24.8	


Normalized RMS difference (percent)

0.3 93.9

Slip rate and shear stress are low-pass filtered at 10 Hz

barall (Michael Barall - FaultMod - 50 m)
dliu.2 (EQdyna.v5.3.3.50m.dliu)
kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4)
li.2 (Duo Li - DG FE,h=200m, 04)
ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)
wang (Yongfei Wang - Generalized Finite Difference - SORD)
wzhang (Wenqiang Zhang - Mixed-Flux DG (200m~10km, 04))
yang (Hongfeng Yang - Finite Element - PyLith)

Metrics for slip rate

0.3

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(1) barall		4.3	7.3	3.6	3.6	4.9	36.9
(2) dliu.2	4.3		9.3	4.3	4.3	6.0	36.4
(3) kutschera.2	7.3	9.3		8.8	8.8	9.1	40.5
(4) ma	3.6	4.3	8.8		0.0	3.2	36.5
(5) wang	3.6	4.3	8.8	0.0		3.2	36.5
(6) wzhang	4.9	6.0	9.1	3.2	3.2		37.4
(7) yang	36.9	36.4	40.5	36.5	36 .5	37.4	

Normalized RMS difference (percent)

93.9

Slip rate and shear stress are low-pass filtered at 10 Hz

- barall (Michael Barall FaultMod 50 m) dliu.2 (EQdyna.v5.3.3.50m.dliu) kutschera.2 (Fabian Kutschera - DG - SeisSol v1.2.0 - fault 200 m - o4) ma (Shuo Ma - Finite Element - MAFE - 50 m on fault)
- wang (Yongfei Wang Generalized Finite Difference SORD)
- wzhang (Wenqiang Zhang Mixed-Flux DG (200m~10km, 04))
 - yang (Hongfeng Yang Finite Element PyLith)

Conclusions

We created two benchmarks with a 15-degree dipping thrust fault.

- TPV36 Rupture reaches the Earth's surface.
- TPV37 Rupture stops spontaneously before it reaches the Earth's surface.

8 modelers or groups successfully ran the benchmarks and submitted results.

7 modelers submitted surface deformation files.

- All have similar patterns of uplift and subsidence, which is important for tsunami generation.
- The majority of codes agree very well on the values of peak uplift and subsidence.

Contour plots from all the codes are similar.

For time series data, most of the codes produced results that agree well throughout the simulation.

• Some codes have differences from the other codes, indicating a possible opportunity for improvement.

Thank you to all the modelers and groups who submitted results! We can't do this without you!