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Dynamic Rupture Modeling

1. BRIEF HISTORY: DUAN’S
PERSPECTIVE



Classical Paper #1 on Methodology

* Rupture propagation:

* Andrews (1976)’ — Supershear transition: Fig 3
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Classical Paper #2 on Methodology

* Result #4: 5 high- h
* Day (1982), Three- esult #4: 5 high-stress patches
. . . . — Complex rupture front: stop (1 s)/recommence
dlmenSIOnaI sim Ulathn (1.8 s) along y-axis; “jump” at 1.1's, 1.9 s along x.
of spontaneous rupture: — Close relation between peak slip V and local
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Classical Paper #3 on Methodology

* Day et al (2005), * TSN: a fault node is split into two halves (plus- & minus-side).

--Trial traction: enforce continuity of tangential v, and normal d.

Comparison of finite

different and ; . S i) R W
boundary integral : ﬁ . )

solutions to three- N i g MMM (i — i) + A g )] + MORE — MR
H H (G+1/2k+102,1+1/2) (+) a(M*++M~)
dimensional Fault plane (5) . (1)
spontaneous rupture, 5 ) , _
JGR -- True traction components:
o. ‘ Tu V=11 I:(j_¥>2+ (7.‘)2]]/2_ -
* TSN implementation. 7 o
n=s Tea” (@) @] 7>
v = T.) +(T,)
Comparison of finite difference and boundary integral solutions ~
to three-dimensional spontaneous rupture T, Vv =2z <0
Sl‘c\cn M. Day and Luis A. Dalguer e 0 [ ~z 2 0

(12)

[18] Note that (12), combined with suitable initial con-
ditions and the constitutive equations for 7., governs fault

_ behavior (at a given point jk) at all times, including I




Classical Paper #4 on Methodology

* Harris et al (2009),
The SCEC/USGS
Dynamic Earthquake
Rupture Code

Verification Exercise,
SRL.

* Code verification: no
analytical solution.

The SCEC/USGS Dynamic Earthquake
Rupture Code Verification Exercise
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Important Application #1: Supershear Rupture

03 % I l
» Andrews (1976): 2D -
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Important Application #2: Geometrically Complex Faults

Dynamics of Fault Interaction: Parallel Strike-Slip Faults

e Harris and Day (1992, JGR): Stepover, 2D
single-event

» Kame et al. (2003, JGR): Branch, 2D single-
event Rupture nodes . "

* Duan & Oglesby (2005, 2006, 2007, JGR): T —
Bend, Stepover, Branch — 2D multicycle
dynamics

. e
* Lozos et al. (2011, BSSA): Stepover, 2D
single-event, parameter space

RUTH A. HARRIS
U.S. Geological Survey, Menlo Park, California

STEVEN M. DAY
Department of Geological Sciences, San Diego State Unwersity, San Diego ,California
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Important Application #3: Off-fault damage (plasticity)

* Andrews (2005, JGR): 2D T 7
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Important Application #4: Crack vs Pulse-like Ruptures

e Gabriel (2012, JGR): 2D models
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Figure 5. Summary of rupture styles as a function of S and R, after nucleation with prescribed healing.



Important Application #5: Bimaterial Interface Rupture

* Andrews and Ben-Zion (1997, JGR) i SRR N :
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Important Application #6: Ruptures with strong v-weakening
30
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Important Application #7: Ground Motion Simulation

* Olsen et al. (2008, BSSA): TeraShake?2
* Andrews (2007, BSSA): Physical Limits

e PGV limits from dynamic models
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A future direction for dynamic rupture modeling: Duan’s view

2. PUTTING 3D DYNAMIC RUPTURE MODELING IN
THE CONTEXT OF EARTHQUAKE CYCLE SIMULATIONS



Interlude: Single-event dynamic rupture vs
multicycle dynamic rupture

* Single-event dynamics:
o Methodology development: more physics ...
o A lot of applications to explore EQ source physics:
o Main restriction: assumed initial stresses

* Earthquake cycles simulations with dynamic rupture included:
o Handle the above restriction for dynamic rupture modeling

o Stresses evolve spontaneously and are consistent with fault geometry and
rupture history: different rupture behaviors, typical events etc.

o Explore various slip behaviors (EQs, SSEs, ...) and their interactions

o Assimilate a variety of data; Explore physics; Conduct physics-based
seismic hazard analysis, including GM simulation/prediction ...



EQdyna: an explicit FEM method, from a dynamic
rupture code to a dynamic earthquake simulator.

* EQdyna before 2020: an explicit FEM code for dynamic rupture only

* Implement rate- & State-dependent friction into EQdyna:
o Luo and Duan (2018)

* Adopt a dynamic relaxation scheme to EQdyna: solve static problems
o Luo, Duan, & Liu (2020)
o Simulate the quasi-static processes: nucleation, post- & inter-seismic

* EQdyna now: a dynamic earthquake simulator
o For earthquake cycle simulations with dynamic rupture included.

o Can simulate earthquake behaviors on geometrically complex faults
embedded in heterogeneous geological structure over many cycles.

o Can capture both seismic and aseismic slip: explore their interactions.



Modeling Fractures in EQdyna:
TSN (traction-at-split-node) method

A fracture is specified as a surface of split
nodes: e.g., fault plane in the figure.

* A discontinuity in the displacement vector is
permitted across the surface.

v'Shear fracture: tangential displacement
discontinuity. Fault friction.

v'Tensile/Opening fracture: normal displacement Or'r.E.m
. . R o . O o,
discontinuity. Hydraulic fracturing.

R

> Opy» Oz Oy, Oy, Oy
u
R

I

v O
GH12k+12,1%1/2) C3)

+ + DR SR= =4
Lt i,

. . . RER R MST, T, T
* Coupling across the fracture is accomplished by
specifying surface traction.

Duan (2010)
a, =M '(F, — K(u, +gv,) + H, £R,).




HPC version of EQdyna: Hybrid OpenMP/MPI

 Scaling tests on SCEC TPV 11 and 210

Relative Speedup on Hydra
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Wu, Duan et al.
(2011)
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Figure 18. Speedup of the hybrid implementation on Hydra

Duan (2012a)

Table 5.2 Model sizes and computational resources used in the convergence test of a benchmark problem

Element size (m) 200 100 50 25
Element number 6,166,160 24,651,088 98,985,744

Time step (s) 0.016 0.008 0.004 0.002
Termination Time (s) 15 15 15 15
Memory (GB) 5.9 23.4 94.0 380.0
CPUs 2 16 128 1024
Wall Clock Time (hr) 1.31 2.11 2.38 9.01

419,554,200
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Down-Dip Distance (km)

Down-Dip Distance (km)

EQdyna: Dynamic rupture modeling —an example

* A dynamic rupture model of the 2011 Mw 9.0 Tohoku EQ:  Duan (2012)

Roles of a possible subducting seamount
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EQdyna-based Dynamic Earthquake Simulator

Nucleation Dynamic Post-seismic
Phase Rupture Phase Luo et al. (2020)
»

(@ o (b) (©)
20 YEENERS 279.90 y 289.21 yr
) i ]

@ °
Inter-seismic o 73 yr ,
Phase < @z, (h (i 3
_ , WM o 0) () s
- Dynamic processes: directly use EQdyna - -
* Quasi-static processes: EQdyna with DR (n)

(m) (0)

-30
Along strike (km)



Applications of the Dynamic Simulator EQdyna:
Putting dynamic rupture within earthquake cycles
e Various slip behaviors and their interactions along subduction
zones over earthquake cycles.

* Earthquake rupture behaviors (patterns, extents, recurrence etc)

of geometrically complex faults & real fault systems such as SAF
over many cycles.

* Recent, complex large earthquakes in the context of rupture
history of a fault system.

* Ground motion simulations from typical earthquakes over many
cycles.




Example #1: Tsunami earthquake generation Meng et al. (2022)

* A conceptual model as tsunami earthquake mechanism

Accretionary Wedege
& Overriding Plate

earthquake
Slow slip events?,

Conditionally stable nterplate megathrust fanlt

Bilek and Lay, 2002 Underthrusting plate




Using the simulator to explore frictional control on
tsunami EQ generation
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On-fault analyses for dynamic ruptures in Model 1

Rupture time contours Slip distribution Moment rate Stress change distribution
a Average Rupture Velocity 1.9 km/s (Model1 Z1Z2) b "
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Observed vs Simulated tsunami earthquakes:
source durations

(a) (b)
25 25
_Java 2006 o~ N ® Modeld Z1&Z22
o~ — ¢ Model5 Z1&22
= I5 % Other models Z18Z2
__% 20 e Peru 1960 ﬁ 20 - o © Other models Z2
5 Kuriles 1975 o Nicaragua 1992 “8 * Standard Model
o L ] 8
8 15 315
5 o ©
o] . i X
7] Mentawai 2010 ye]
ke Kuriles 1963@ Alaska 1946 @ ® X
g 10 -PETULJQQG Java 1994 J.aoan 1896 o S 10 é o
© = X% o}
£ 5 X
o =
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7.4 7.6 7.8 8 8.2 0 -0.001 -0.002 -0.003 -0.004 -0.005 -0.006
Mw friction coeff a-b value
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Conclusions on tsunami EQ generation

The conceptual model (asperities + conditionally Java 2006 tsunami earthquake
stable zone) works well for generating tsunami
earthquakes, of characteristics of slow rupture
velocity, long normalized duration and spectrum
depleted in high frequency.

1 T N O |

Moment-Rate (N-m/s x 1018)

e The level of velocity-weakening of the
conditionally stable zone is critical to sustain
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B 201 r
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* Low normal stress asperities are relatively easy to
be ruptured in a cascade fashion

4 8 12
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Example #2: Interaction between SSEs and megathrust
earthquakes Meng & Duan (2022)

* SSEs = Slow Slip Events: Hikurangi ~
(1947

widely observed along tsunami sy

subduction zones earthquake) [7#

* Observations suggest
possible interactions
with megathrust
earthquakes.

aosls S o7/ 14

Tohoku
(2011 Mw 9.1 F
earthquake) |
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Movie starting from Event 1 ending at Event 3
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Conclusions on interactions between EQs and SSEs

* Small earthquakes (Type | events) are preceded by fewer SSEs.

* Large earthquake (Type Il events ) are preceded by many SSEs.

* The interseismic coupling degree is low preceding a Type Il earthquake due to active
SSEs, and is high preceding Type | earthquake due to much fewer preceding SSEs.

Types |Examples |Magnitude |No. of | No. of | Ruptured |Recurrence |Ruptured | Average
(Mw) preceding | following | asperities |interval Length rupture
SSEs SSEs (years) (km) speed
(km/s)
Typel |Eventl ~7.1 1 6 Z2 ~ 60 ~70 ~1.5
Event 3
Type ll |Event 2 ~7.3 6 (S1-S6) |[1(S7) 71 & 72 ~ 60 ~ 110 ~0.7

Meng, Q. & B. Duan/ Interaction between megathrust earthquakes and slow slip events at shallow subduction zone




Example #3: 3D multicycle dynamics of stepover faults buan
(2023, AGU)

Idealized 3D Stepover Models in This Study 3D Multicycle Dynamics of the Stepover Fault
Fault Geometry Time History of Max Slip Rates: Event Pattern & Recurrence Interval
Earth's surface '
s stepover
Model A 1 | Model B
fault 1 @ ®
e 4
Fie 1 . L ) . SNy ' |||L||]r;
8 Two vertical strike-slip faults forming a stepover (From Harris and Day, 1999). In RN P Y _—

this study, we choose a dilational stepover with a stepover width of 2 km and an overlap of 3 km. 0 200 300 200 = ; . =

Time (year) Time (yea

Table 1: Three Models in This Study
for normal stress (A & B) effects and loading rate effects (A & C) Figur92 Depth-dependent normal

Model B 0f ModelC 1 stress (Model B, top right) results in
e more complex event patterns and
i | more irregular recurrent intervals

Depth profile of Lithostatic pore Hydrostatic pore As in Model A g 4 | than the depth-independent case
effective normal pressure => depth  pressure => depth T (Model A, top left). Faster loading
stress independent normal dependent normal g (Model C, bottom) does not affect

- - = | ‘ J } event patterns much, but results in
Tectonic loading 10%-9 m/s 10%-9 m/s 3*10"-9 m/s 8l L SRR I‘v\ KAL) shorter recurrence intervals than
rate at boundaries ‘ - Model A.




Final Slip & Hypocenter Location of Model B: Rupture Pattern
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Example #4: Fault-dip effects on EQ ruptures along the
Mojave segment of SAF Bordbar et al. (2024, SCEC), on-going

e Background: Paleoseismic
observations (Bemis et al.,
2021)

o Fewer earthquakes along the 210 mion 1 : ; el

straight Moj a_Ve segment than Figure 2.The southern San Andreas fault (SSAF)

the surrounding system and the locations of paleoseismic sites
(black triangles) with dipping fault geometry from
Fuis et al. (2012). (from Bemis et al., 2021).
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Example #4: Fault-dip effects on EQ ruptures along the
Mojave segment of SAF Bordbar et al. (2024, SCEC), on-going

DATA AND MESH MODELS

(a) (b) @) ) @
‘ a-b : ab .
critical distance | cntlcal distance ||
Fig. 1 (a) Map view of vertical SAF model surface and (b) dipping SAF model \
surface Fial..
@) (b)

effective normal stress | effectlve normal stress || I

Fig. 2 Mesh model of the San Andreas Fault created using CUBIT software for _ Fig3 Distributions of a-b in the rate-and-state friction law, critical distance
: : : effective normal stress (a) for vertical dipping and (b) ) dip-varying fault geometry , and (c)
(a)Quasi static phase and (b) Dynamic phase. :
the profiles of each parameter..



Challenges & Strategies
3. CONCLUDING REMARKS



Challenging problems need powerful tools

* 3D earthquake cycle simulations with coseismic dynamic
rupture included are are very challenging due to a large range
of scales in

»Time: from seconds to thousand years
»Space: from meters to thousand kilometers
* Integrating with observations for real case studies requires
handling complexities in models
» Mesh generation for complex fault and velocity structures

» Largely hexahedra elements with degenerated wedges/tetrahedra



Strategies

* Further parallelizing EQdyna
»Scale it to hundreds of thousands of CPUs
» Implement GPU accelerators into it
» Other emerging techniques

* |Integrating the simulator with a 3™-party mesh generator

» Currently, mesh generation is integrated with the solver: good for
MPI parallelization, but it is challenging to create complex mesh with
(largely) hexahedra elements.



Computation resource used in current studies
Texas A&M High Performance Research Computing (https://hprc.tamu.edu)

Grace cluster
Software: EQdyna (Dynamic Earthquake simulator)
Job size: Elements: 30,750,300
CPU cores 600
Memory 300 GB
Running time 62 hours for about 10 earthquake cycles

Meng, Q. & B. Duan/ Interaction between megathrust earthquakes and slow slip events at shallow subduction zone


https://hprc.tamu.edu/

A | TEXAS MM

TEXAS A&M UNIVERSITY
WI Geology & Geophysics

Thank you for your attention !
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