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The 1700 Great
(ascadia Earthquake

On January 26, 1700 at 21:00 PST a magnitude 9
earthquake occurred on the Cascadia Subduction
Zone. The earthquake generated a tsunami that

propagated across the Pacific Ocean, inundating the
coast of Japan approximately nine hours later.
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Infographic from https://cascadiaguakes.org/
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Motivating science questions

Shallow rupture behavior, splays and yielding and
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DET Community Products

Self-consistent earthquake dynamic rupture and
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3D dynamic rupture simulations (SeisSol)
 complex geometries (CFM, bathymetry)

* heterogeneous elastic properties (CVM) velooh
* splay faults 2]
* sediment yielding ;
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* sources informed by coupling model . .
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(Uphoff et al., 2019)

Tsunami generation as part of simulation
(minutes), tsunami propagation (hours)
with different codes



DET Community Products

Self-consistent earthquake dynamic rupture and

tsunami models (it’s the same sourcel)
3D dynamic rupture simulations (SeisSol)

 complex geometries (CFM, bathymetry)
* heterogeneous elastic properties (CVM)
* splay faults

* sediment yielding

* sources informed by coupling model

validation with paleoseismology

Partial ruptures governed by the complex
interplay between geodetic slip deficit,
rigidity, and pore fluid pressure in 3D
Cascadia dynamic rupture simulations

Shallow-locked 30

48°N
46°N
44°N
42°N
127°W  125°W  123°W
Low rigidity
Cony, |
S :
48°N|
46°N
12
10
44°N N
6 =
3
4 v
42°N
2
0
127°W  125°W  123°W
Low rigidity
y=0.97
48°N|
46°N| ‘
44°N
“
) My 8.29
42°N ‘\1" —
f
127°W  125°W  123°W

Model 20

Slip deficit models

(b)

(Glehman, Gabriel, Ulrich, Ramos,
Huang and Lindsey, preprint)

Shallow-locked 80 Gaussian Gaussian SFs x 2 Gaussian SFs x 4 Gaussian increased SF
at central CSzZ
10 20 km _ \];& 20 km 10 20 km 10 20 km
A8°N |reemeomtoeee 48°N 48°N 48°N 48°N
46°N |-l - SR 46°N 46°N 46°N 46°N
5 E £
44°N S 44°N 44°N 5 44°N 44°N g
% S 3
° S o
= o =
b & 7
42°N 42°N 42°N 42°N 42°N |
127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W
Dynamic relaxation simulation
Low rigidit High rigidity Low rigidity Low rigidity Low rigidity Low rigidity
A — L TE—— e — T ~~ R —
W S O i | % -
48°N \ 48°N 48°N |- 48°N 48°N |- 48°N
46°N| 46°N| 46°N |- 46°N — e 46°N 46°N|
ﬁ 12 10 10 28 64 10
‘ 56
L 10 s 8 24 2 8
44°N | gy . 44°N [ [ g | 44°N — 44°N 20, 44°N | 44°N ||| :
| g 6 2 6 g 16 g 40 6
6 = Z Z = 32 |
o S ‘8 $E 8 | 2 ’
42°N | — 42°N 5 42°N "2' """""" A2°N | 8 S 42°N 16 42°N 72 o
. 8 : |
0 0 0 0 0 0
| é i St | /: | |
127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W
3D Dynamic rupture simulation
Low rigidity High rigidity Low rigidity Low rigidity Low rigidity Low rigidity
y=10.98 y=0.97 y=0.88 y=0.65 y=0.97
48°N | 48°N |- 48°N 48°N 48°N 48°N
46°N |- 46°N 46°N 46°N E— 46°N 46°N|
; 48 f 48 ‘
[ 42 / 42
} f : f '
44°N 44°N 36 | a4°N |- @30 | 44°N 36 44°N 44°N 36
—_ f >~ ; —_ I's —_ i
£ 0E ~ -~ 0 ~ 0E 4
242 / / 24°3 24°5
Y M, 8.29 £ Y My 8.77 M, 8.60 =S Y M, 8.85 e ¢ My 8.74
| 18 wn { | 18 un { 18 1 ( !
gaen | D b a2eN]| ] D | 42°N 42N e — 42°N 42°N ||
5 12 8 = 12 12 5
6 6
Va Ve Vi | ya y
8 ° { 0 o | {
127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W 127°W  125°W  123°W
Model 22 Model 5 Model 2 Model 11 Model 15 Model 16



Depth (km)

DET Community Products

2D and 3D earthguake cycle models with fluid transport and viscoelasticity
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* initially 2D, then moving to 3D
* test hypotheses for slow slip events and their relation to megathrust ruptures
* self-consistency with fluid production and transport (Fluids SIG)

(Ozawa, Yang, & Dunham, 2023, in progress)

log10 slip rate [m/s]



3D Cascadia earthquake cycle modeling with viscous flow

10} |

50 |

60 L

10

20

%1073

50°

10+

50

60

10O

S

0

50
o (MPa)

8.7607

Event 31

50° pwy

7.7308

Event 32

50°

-128° -126° -124°

Accumulated slip for
5000 years

50°

4982.5049 year

8.0066

Event 33

° S
50° g

m

8.5645

Event 34

48°

46°

44°

42°

50°

depth 10 km profile

- ﬁl____.1 E

8.7709

Event 35

(1

50000

50°

Zhang, Ozawa, Dunham (in progress)

oy

ﬁiﬂwgg;.

100000 150000 200000 250000
Time step

7.8150

Event 36

50° o

71.7377

Event 37

50° ¢

8.8780

Event38

50°
48° |
46° |
44° |
42° |

40° —
-128°

!

300000 350000 400000

8.2705

Event 39

-124°

3.3680

Event 40

50°

-128°

-124°

m
10

T
I
(-
o

—
I

log1o V (M/s)



rthquake cycle models

2D earthquake cycle simulations with tandem
 Varied megathrust dip & downdip curvature

« Max. earthquake size primarily f(W/h*) « dip
e Curvature - event variability & recurrence
« e.g. periodic, bimodal, or supercyclic events
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Biemiller, J., Gabriel, A.-A., May, D., Staisch, L.,
Subduction zone geometry modulates the megathrust

earthquake cycle: magnitude, recurrence, and
variability. JGR: Solid Earth.



Code verification through community
benchmark problems and cross-comparison

e Our current TPV36/37 benchmark is jointly
organized and includes the calculation of
seafloor uplift

e Upcoming in Spring 2025: added water layer
(and off-fault plasticity?)

Upcoming earthquake cycle benchmarks for megathrusts
YR 2. Elastic solid, general solution

YR 3. Elastic solid, focus on slow slip events

YR 4&5. Viscoelasticity and fault-zone fluid transport
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Timeline and upcoming topical and

training workshops

Wokshops:

¢ fluids and faulting (YR2)
¢ shallow rupture (YR3)
¢ slow slip (YR4)

e model validation with paleoseismic data
(YR5)

e training for DET modeling software (YR5)

YEAR 1

« Dynamic rupture
simulations of
megathrust
earthquakes with
tsunami generation

« Earthquake cycle
simulations accounting
for fluid production and

transport, slow slip
events, and megathrust
earthquakes
« Website for community
code verification
activties

+ Dynamic rupture

benchmark problems
(2D and 3D megathrust
earthquakes)

YEAR 2

« Extension of dynamic

rupture simulations to
account for splay faults
and off-fault yielding,
using preliminary CFM
and CVM
- Continued
development of
earthquake cycle
simulations, focusing on
slow slip events (fast
boundary element code
for elastic half-space)
+ Earthquake cycle
benchmark problems
(2D and 3D, elastic)

YEAR 3

« Development of 3D

earthquake cycle code

using finite elements to

handle heterogeneous
elastic properties and
material nonlinearity

« Tsunami modeling from

dynamic rupture
simulations and
validation against
paleoseismic data
- Earthquake cycle
benchmark problems
(2D and 3D, focusing on
slow slip events)

- Extension of 3D

earthquake cycle code

to account for
viscoelasticity,
integrating CFM and
CVvM
- Framework for
self-consistent
earthquake and
tsunami hazard
modeling
 Earthquake cycle
benchmark problems
(2D and 3D, adding
viscoelasticity and/or
fluid transport)

« Extension of 3D
earthquake cycle code
to account for fluid

transport, fully
integrating CFM and
CVM

« Hazard assessment
using self-consistent

earthquake and
tsunami models

+ Earthquake cycle
benchmark problems
(2D and 3D, adding
viscoelasticity and/or

fluid transport)



