## Implications of dynamic rupture models for the Santa Barbara-Ventura Area

#### Julian Lozos

California State University, Northridge

What can dynamic rupture models tell us about fault geometries in the Santa Barbara-Ventura area?

Julian Lozos

California State University, Northridge

## What can dynamic rupture models tell us about fault geometries in the Santa Barbara-Ventura area?

Or: So you've found yourself in a geologist fight...

#### Julian Lozos

California State University, Northridge

# There is some debate over the geometry of the Pitas Point Fault.

The CFM has two geometries. Which one is most consistent with observations?

**CFM 7 Preferred** 



### Dynamic rupture modeling is a great tool for addressing these questions!

- Can use observations to inform inputs and constrain outputs.
- Requires no a priori assumptions about the rupture.
- I compared dynamic rupture simulations to paleoseismic and precarious rock data to study the 1812 Wrightwood earthquake!
- I can take a similar approach for the Pitas Point!

Peak horizontal particle motion (m/s)



#### Model Setup

- 3D finite element method (FaultMod; Barall, 2009)
- Fault geometry: SCEC CFM
  - Meshed faults with Coreform Cubit
- Velocity structure: SCEC CVM
- Linear slip-weakening friction
- Stress: tapered with depth (more detail on the next slide)

### Output Comparisons

- Displacement at Pitas Point
- Cluster of precariously balanced rocks in the Santa Ynez Mountains
- Mountains up and basins down
- Stress drop?

### Observations help constrain initial stresses.



- These constraints still allow a wide range of stress levels.
- The right stress state should produce a relatively low stress drop (Goebel et al., 2016).
- I have tested a few cases, but here, I am mostly showing results with  $\sigma_{\rm NS}$  = 60 MPa,  $\sigma_{\rm EW}$  = 35.5 MPa,  $\sigma_{\rm v}$  = 40 MPa

# Within the same regional stress field, the steeper geometry produces a larger earthquake.



- The steeper geometry cuts deeper into areas of higher stress.
- The ramp breaks directivity.

#### The steeper geometry causes stronger ground motion.





- Largely due to the same factors as the magnitude/slip difference.
- Cluster of precarious rocks experiences similar PGV in both cases.

#### The steeper geometry causes larger displacement.



- Both have largest displacement offshore.
- Steeper geometry has more displacement at Pitas Point.
- Lower-angle geometry has more displacement under on-shore mountains.

# Initial stress state will affect some of these differences.

- I could run a steeper dip model with lower stress drop.
  - The slip would also be lower.
  - The ground motion and displacement patterns would not change qualitatively.
- I could run a lower-angle model with higher displacement.
  - The stress drop would go up.
  - The ground motion and displacement patterns would not change qualitatively.

### Not so much conclusions as thoughts...

- I should probably have more than one fault in this model.
  - Certainly at least the different parameterizations of the Padre Juan.
  - May need a multi-fault event to explain Pitas Point uplift.
- I need to keep looking for the right stress state.
  - The CSM would be a good next place to look.
- Finding more PBRs would be more helpful!
- The lower-angle (CSM preferred) geometry does fit topography better so far.