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SCEC’s Community
model ecosystem

Community models are built by working
groups assembled within the agile and
open organization of SCEC

Each model is a living product made
publicly available for the benefit of the
general public and the scientific community

https://www.scec.org/science/community-
earth-models/

Observations

® Community Geodesy Model CGM

Structures

® Community Velocity Model CVM
® Community Fault Model CFM
® Geological Framework GFM

Predictions

® Community Stress Model CSM
® Community Thermal Model CTM
® Community Rheology Model CRM




Why a rheology
model?

Testing
L=l Jo\aETaI [ © Stress transfer from one fault to another
o] glol= I 1M * Origin of the state-wide stress field

all scale

¢ gl. How are faults loaded across temporal and
spatial scales?

® g2. What is the role of off-fault inelastic
deformation on strain accumulation, dynamic
rupture, and radiated seismic energy?
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Cover of 2019 workshop

“l History of the CRM
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SCEC Workshop on Ductile Rheology of the Southern California Lithosphere

e May 1-2, 2013, Menlo Park, CA
e Conveners: Wayne Thatcher, Yuri Fialko, Liz Hearn, and Greg Hirth
e EOS Report: Thatcher et al. (2013) DOI 10.1002/2013e0320006

SCEC5 — 1 May 2017 to 30 Apr 2022.

e Community Models. We will enhance the accessibility of the SCEC Community Models, including the model
uncertainties. Community thermal and rheological models will be developed.

e Working group: Hearn (lead), Thatcher, Oskin, Hirth, Behr, Legg, Montesi

Additional workshops and meetings (last: February 2023)

https://doi.org/10.5281/zenod0.4579627
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What is a “rheology”?

* Link to seismic velocity, stress transfer

Frictional sliding -
— N

e Link earthquake cycle

e Link to long-term stresses
o e o=f(¢, €,T,P,C,F,g,C_OH,E ...



What is a “rheology”?

Elasticity

e Link to seismic velocity, stress transfer

Frictional sliding

e Link earthquake cycle

Ductile flow law

e Link to In:ig-tegarStresses
e o=f(g, *,T,P,C,Eeq,C OH,E ..)
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Building the
Community
Rheology Model

Granodiorite

Meta-Felsic
Schist

Meta-Basic

GFM:
Geological
Framework

e Lithotectonic blocks with stratigraphy
e Define flow laws for each rock type

Sedimentary

CTM:

¢ Constrained by heat flow regions
¢ Includes transient effects

Temperature
Model

Basalts/Gabbro

CFM: Fault ¢ Define the surfaces of the framework
\VileYe =) e Associate friction laws

Oskins et al. (2019)

GFM: included in Hearn et al. 2020, https://doi.org/10.5281/zenod0.4579626
CTM: Thatcher et al., 2020, https://doi.org/10.5281/zenod0.4010834



Most lab work focused on
fundamental physical

HOW dOeS ||thO|Ogy mechanisms and “cleaner” mono-

mineral samples

|nﬂ SISIA[6S rheOlOgy? Need rheological model
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* Mixing relation
e Logarithmic mixing (Ji et al.,
2001) with Uniform strain
, rate
Schist ©Richard Harwood A e (R RSO b .
Gabbro ©Learning Geology s T R e P R * Minimize power (Huet et al.,
Granodiorite and peridotite ©James St. John .7 2 i 2014




E Stl M atl N g rh 0 | Og | es * Each mineral is associated with a flow law:

* Assumes dislocation creep: no grain size
dependence (yet)

Q+PV

)fw

* Assumes water saturation (Shinevar et

Q[)/mol]| VI[m] B [Pa.s!/"] Referencs al., 2018): f, = 5.521
9 —31,800+10.09x10~6P
X 10 exp( )

re
Quartz 1 13500 - a\S )

* 0= Bé%exp(

RT

* For non textured rocks (included in the initial
CRM release)

* Follow MPGe mixing relation of Huet et
al., (2014):

. o\ Q+PV
Kronenberg et al. (1990) -— (E) eXp( )fw

Dimanov and Dresen (2005) * For textured rocks
* Linear mixing assuming uniform stress

(o)
7.0505 x 10° Hacker and Christie (1990) * Ns = Ty PUN
2 Z(d)l(Bi) ‘ eXp(__Ql;;Vl) ‘El)

Olivine 3.5 520000 22 x107°% 83362 x 10° Hirth and Kohlstedt (2003)




Example results

(non-textured)

e Calculate effective viscosity for lower crustal materials

 Main difference is between mafic and felsic rocks
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Two Alternative CTMs
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* 14 “constant heat flow regions” R N o !

e Additional constraints for LAB depth or xenoliths - e | N '
¢ 1D temperature profiles

® Most at steady-state

e Some include transient thermal processes
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CCR California Coast Range
3G San Gabriel Block

e Interpolated heat flow data AT oo 1) everos menice
* Steady-state temperature profile i Ayt Desont y

PR  Peninsula Ranges
SN Sierra Nevada
GV  Great Valley

https://southern.scec.org/research/ctm
https://doi.org/10.5281/zen0do.4010834



https://southern.scec.org/research/ctm
https://doi.org/10.5281/zenodo.4010834

Basic steady-state

TEMPERATURE
geotherm

Crustal Geotherm

Lithosphere

e T,~ 20 °C at surface

e Surface heat flow => gradient ~10-30 °C/km
¢ Include radiogenic heating (40% of heat flow)

LAB

DEPTH

Mantle adiabat

e T, 1200 to 1400°C, gradient 0.4 °C/km

Asthenosphere

* T,~1100°C, gradient ~ 3 °C/km
* |[ntersection becomes the LAB

I _ Thatcher, 2023, CRM workshop I



Basic steady-state
geotherm

Crustal Geotherm

® T,~ 20 °C at surface

e Surface heat flow => gradient ~10-30 °C/km
e Include radiogenic heating (40% of heat flow)

Mantle adiabat

e T, 1200 to 1400°C, gradient 0.4 °C/km

Viantle melting curve (solidus

¢ T, ~ 1100 °C, gradient ~ 3 °C/km
¢ |Intersection becomes the LAB
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Additional constraints

Surface Heat Flow, mW/m2
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13 HEAT FLOW REGIONS ‘

iIST  Inner Salton Trough

oST Outer Salton Trough

WBR Western Basin & Range

iCB  Inner Continental Borderland
CCR California Coast Range

SG San Gabriel Block

WTR Western Transverse Ranges
LA  Los Angeles Basin

GV  Great Valley

MD Mojave Desert

VB  Ventura Basin

ETR Eastern Transverse Ranges
PR Peninsula Ranges

SN Sierra Nevada

e Well-constrained WBR geotherm
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e Model Transient effects

8/20/2025 14
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Transient Model Geotherms
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Fig.9a Thatcher & Chapman 2020

21 May 2020

Transient models

Start with a cold subduction-like geotherm

Relict Farallon fragments detach
corresponding to a sudden asthenosphere
exposure at the base of a 50 km thick
lithosphere

Evolve for 28 Myr
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Final CTM geotherms
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42 km depth
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All together now: the CRM!
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Are CRM realistic?

(Burgers case)

Johnson et al., 2020

BR  GVISN

Pollitz et al., 2022

Hearn et al. (in revision)



Envisioning a future
CRM
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Wider range of bulk rheologies AT |
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Friction on faults AW o\ o]
2025 CRM workshop! E ) |" I"\j}}:x -
e Link GFM boundaries to CFM \" - "’4 ,

* Also helpful for shear zones <% 20k TR
i a m

=220\ 7 depth
Better explorer e o ep ~
o 2  700°C
: : : |
California-wide focus __{——

e Need CA-wide GFM, CTM
¢ 2025 GFM/CTM workshop!
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