From GMF to CRM

Laurent Montesi – University of Maryland with material stolen from Wayne Thatcher & Liz Hearn

SCEC's Community model ecosystem

Community models are built by working groups assembled within the agile and open organization of SCEC

Each model is a living product made publicly available for the benefit of the general public and the scientific community

https://www.scec.org/science/community-earth-models/

Why a rheology model?

Testing geodynamics concepts at all scale

- Stress transfer from one fault to another
- Origin of the state-wide stress field

Community
Rheology
Model
(CRM)
initiated in
SCEC5

- q1. How are faults loaded across temporal and spatial scales?
- q2. What is the role of off-fault inelastic deformation on strain accumulation, dynamic rupture, and radiated seismic energy?

Hearn (2019) tectonophysics DOI 10.1016/j.tecto.2019.02.016

History of the CRM

SCEC Workshop on Ductile Rheology of the Southern California Lithosphere

- May 1-2, 2013, Menlo Park, CA
- Conveners: Wayne Thatcher, Yuri Fialko, Liz Hearn, and Greg Hirth
- EOS Report: Thatcher et al. (2013) DOI 10.1002/2013eo320006

SCEC5 – 1 May 2017 to 30 Apr 2022.

- Community Models. We will enhance the accessibility of the SCEC Community Models, including the model uncertainties. Community thermal and rheological models will be developed.
- Working group: Hearn (lead), Thatcher, Oskin, Hirth, Behr, Legg, Montesi

Additional workshops and meetings (last: February 2023)

August 2020: First release Hearn et al. https://doi.org/10.5281/zenodo.4579627

Elasticity

• Link to seismic velocity, stress transfer

Frictional sliding

• Link earthquake cycle

Ductile flow law

- Link to long-term stresses
- $\sigma = f(\varepsilon, \varepsilon, T, P, C, F, g, C_OH, \Xi ...)$

What is a "rheology"?

Elasticity

• Link to seismic velocity, stress transfer

Frictional sliding

• Link earthquake cycle

Ductile flow law

- Link to long-term stresses
- $\sigma = f(\varepsilon, \varepsilon, T, P, C, F, g, C_OH, \Xi ...)$

Building the Community Rheology Model

GFM: Geological Framework

- Lithotectonic blocks with stratigraphy
- Define flow laws for each rock type

CTM: Temperature Model

- Constrained by heat flow regions
- Includes transient effects

CFM: Fault Model

- Define the surfaces of the framework
- Associate friction laws

GFM: included in Hearn et al. 2020, https://doi.org/10.5281/zenodo.4579626

CTM: Thatcher et al., 2020, https://doi.org/10.5281/zenodo.4010834

Estimating rheologies

	n	р	Q [J/mol]	V [m]	B [Pa.s ^{1/n}]	Reference
Quartz	4	1	13500		1.1941 × 12	minerals
Feldspar	3	1	345000	d add	itional wide C	minerals) (RM?) (Separate of the second sec
Biotit	o \	NE	, lies	state	Mide	Kronenberg et al. (1990)
Pyroxe			fora		4.2398×10^5	Dimanov and Dresen (2005)
Amphibo	5./		244000		7.0505×10^6	Hacker and Christie (1990)
Olivine	3.5	1	520000	22×10^{-6}	8.3362×10^6	Hirth and Kohlstedt (2003)

- Each mineral is associated with a flow law:
 - Assumes dislocation creep: no grain size dependence (yet)

•
$$\sigma = B\dot{\varepsilon}^{\frac{1}{n}} \exp\left(\frac{Q+PV}{nRT}\right) f_W^{\frac{p}{n}}$$

- Assumes water saturation (Shinevar et al., 2018): $f_W = 5.521$ $\times 10^9 \exp\left(\frac{-31,800+10.09\times10^{-6}P}{RT}\right)$
- For non textured rocks (included in the initial CRM release)
 - Follow MPGe mixing relation of Huet et al., (2014):

•
$$\dot{\varepsilon} = \left(\frac{\sigma}{\bar{B}}\right)^{\bar{n}} \exp\left(-\frac{\bar{Q} + P\bar{V}}{RT}\right) f_w^{-\bar{p}}$$

- For textured rocks
 - Linear mixing assuming uniform stress

•
$$\eta_S = \frac{\sigma}{2\sum \left(\phi_i \left(\frac{\sigma}{B_i}\right)^{n_i} \exp\left(-\frac{Q_i + PV_i}{RT}\right) f_w^{p_i}\right)}$$

Example results (non-textured)

- Calculate effective viscosity for lower crustal materials
- Main difference is between mafic and felsic rocks

Two Alternative CTMs

CTM v.20.8 (Thatcher & Chapman, 2019)

- 14 "constant heat flow regions"
 - Additional constraints for LAB depth or xenoliths
- 1D temperature profiles
- Most at steady-state
- Some include transient thermal processes

Alternative CTM: Shinevar et al. (2018)

- Interpolated heat flow data
- Steady-state temperature profile

Thatcher et al. (2020)

https://southern.scec.org/research/ctm https://doi.org/10.5281/zenodo.4010834

Basic steady-state geotherm

Crustal Geotherm

- T_o ~ 20 °C at surface
- Surface heat flow => gradient ~10-30 °C/km
- Include radiogenic heating (40% of heat flow)

Mantle adiabat

• T_o 1200 to 1400°C, gradient 0.4 °C/km

Mantle melting curve (solidus)

- $T_o \sim 1100 \,^{\circ}$ C, gradient $\sim 3 \,^{\circ}$ C/km
- Intersection becomes the LAB

Basic steady-state geotherm

Crustal Geotherm

- T_o ~ 20 °C at surface
- Surface heat flow => gradient ~10-30 °C/km
- Include radiogenic heating (40% of heat flow)

Mantle adiabat

• T_o 1200 to 1400°C, gradient 0.4 °C/km

Mantle melting curve (solidus)

- $T_o \sim 1100$ °C, gradient ~ 3 °C/km
- Intersection becomes the LAB

Additional constraints

Xenolith

• Well-constrained WBR geotherm

Seismic LAB

- Surprisingly little variation despite range of surface heat flow
- Model Transient effects

8/20/2025

Transient models

Start with a cold subduction-like geotherm

Relict Farallon fragments detach corresponding to a sudden asthenosphere exposure at the base of a 50 km thick lithosphere

Evolve for 28 Myr

Final CTM geotherms

All together now: the CRM!

Hearn et al. (in revision)

Are CRM realistic?

Envisioning a future CRM

Wider range of bulk rheologies

Elasticity!

Friction on faults

- 2025 CRM workshop!
- Link GFM boundaries to CFM
- Also helpful for shear zones

Better explorer

California-wide focus

- Need CA-wide GFM, CTM
- 2025 GFM/CTM workshop!

