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Understanding the Role of Active Tectonics in 
the Thermal Structure of the 

California Plate Boundary System - 
Why does it matter?

1. Earthquakes: The T-structure largely controls the depth 
distribution of seismicity. Knowing it helps define 
extent of seismogenic structures.

2. Plate Boundary Rheology: Mechanics, time scales and 
spatial extent of deformation is directly a f(T)

3. Current Active Tectonics:  The use of thermochron and 
other T-dependent observables needs a robust view of 
the T-structure.

4. Plate Tectonic Evolution: The T-structure records the 
sequence of tectonic events that have produced the 
current plate boundary system.
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Heat Flow data initially collected to test 
models of fault strength (frictional heating)

Shear Heating on the faults do not 
generate the Heat Flow pattern observed!

Heat Flow in the 
Franciscan Terrane 

varies from 28 mW m-2 
to > 90 mW m-2

e.g. significant 
variations in heat 
flow in the 
Franciscan and 
coastal regions
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What’s still missing?
1. Current models focused on MCC processes, but other 

tectonics may apply to regions unaffected by slab window 
processes.

2. Crustal structure and composition variations 

Slab Window Heating Model



Defining the 3 Thermal-Tectonic Corridors along the 
Northern San Andreas Plate Boundary

1. Salinian Corridor: Emplaced Salinian terrane over Pacific Plate - 
bounded on the East by the San Andreas Fault.  T-modifying tectonics 
as terrane is translated through the Santa Cruz Mtns.

2. Pioneer Corridor: Primarily Franciscan terrane (Coastal Belt) along 
swath transited by the Pioneer Fragment (Pacific Plate). T-modifying 
tectonics at MTJ (rapid exhumation) and restricted MCC deformation.

3. MCC Corridor: Primarily Franciscan terrane (Central and Eastern 
Belt) associated with slab window tectonics. T-modifying tectonics 
include transient crustal thickening/thinning and changes in sub-
crustal thermal regime.
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New, ‘high resolution’ tomography lets us define better crustal 
structure models for the region - helps to define corridors
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Salinian Corridor Thermal-Tectonic Evolution



~ 7-6 Ma PresentPrims and Furlong, 1995 Geology

Baden et al., 2022
Sci.Adv.
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Exhumation

Salinian Corridor Thermal Evolution
1. Crustal Thickening through restraining bend
2. Exhumation from resulting uplift (3 m.yr.)
3. Slower (no) exhumation north of SF Peninsula

AHe Ages 
1.7 Ma (obs.) 
1.2-1.7 Ma (model)
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Pioneer Corridor Thermal-Tectonic Evolution
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T-modifying Tectonics:

Pioneer Fragment is 
a remnant of Farallon 
slab captured by the 
Pacific during initial 
formation of San 
Andreas and MTJ

largely at the Eel River 
Basin to Coastal Belt 
transition, driven by 
migration of PF 
(at the MTJ)

Facilitates 
plate boundary 

formation 
along eastern 
margin of PF 
(shear zone 

with slab 
window)

Tomography 
from Furlong 
et al. 2024, 
Tectonics
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Heat Flow observations
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Pioneer 
Corridor

2 km - burial/exhumation

What about lesser/
slower exhumation?

10

Remember - underlying system 
is migrating northward!

High heat flow, 
but Low crustal 
temperatures

ERB Burial (Wildcat Fmt.) 
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Low-T Thermochronology data (AFT, AHe) show a 
more complex pattern [partial annealing/retention] but 
are explained with the same burial/exhumation models
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Competing Tectono-Thermal 
Processes

1. Straddling the MTJ Region: 
MCC Crustal Thickening will 
depress the heat flow and 
geotherm; offset by effects of 
exhumation increasing heat 
flow

2. South of MTJ: MCC 
switch to crustal 
thinning coupled with 
continued exhumation 
drives rapid increase in 
heat flow

3. Further South : 
MCC Thinning 
declines and 
exhumation slows 
down - decrease in 
heat flow increase 
rate.

MCC Corridor Thermal-Tectonic Evolution



MCC Corridor Thermal-Tectonic Evolution
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1. Along MCC Corridor the ‘thermal’ competition between crustal thickening/thinning and elevation/relief 
driven exhumation produces a complex thermal regime both spatially and with depth 

2. Can have a large effect on crustal rheology, seismogenic depth, and crustal metamorphism

~ base of seismogenesis

Transient Crustal Geotherms
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Cape Mendocino Region
Northern California

Active Tectonics and the Thermal Structure of 
Northern California

1. An ~ 200 km wide swath along the Pacific-North America plate boundary 
undergoes T-modifying tectonics as the plate boundary develops 

2. Thermal perturbations are significant, producing spatial and temporal T contrasts 
affecting crustal rheology, seismicity, petrology… 

3. Tectonics are getting better understood allowing improved estimates of T-structure 
and it evolution - critical to incorporating active tectonic processes in our analyses 

Singley Flat
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