

Zoom

December 2, 2025

Statewide California Earthquake Center

Dynamic Rupture Group Workshop

A Workshop to Improve our Understanding of (Coseismic) Fault Friction

Ruth A. Harris

(U.S. Geological Survey)

Our group uses dynamic rupture simulation codes to do exciting and innovative science.

This includes our investigations into earthquakes and how they operate.

How Dynamic Earthquake Rupture Simulations Work

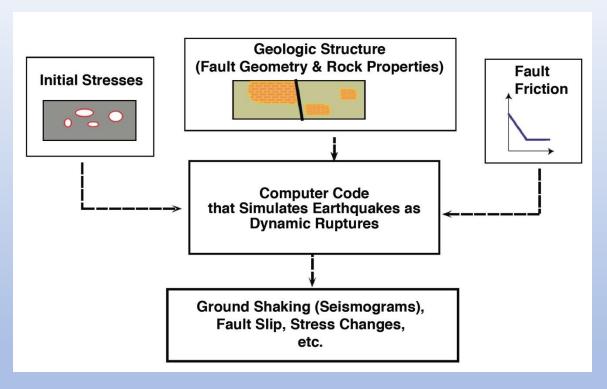
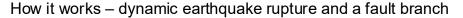


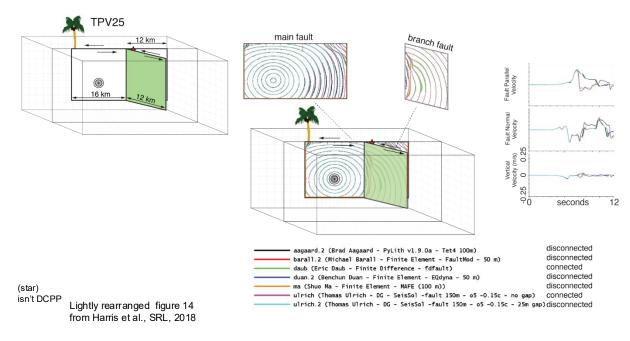
figure from Harris et al., SRL, 2018 (and earlier related Harris publications)

2022 Paper Describing How the Simulations Work

Working with Dynamic Earthquake Rupture Models: A Practical Guide


Marlon D. Ramos*1,20, Prithvi Thakur10, Yihe Huang10, Ruth A. Harris30, and Kenny J. Ryan2

Abstract


Dynamic rupture models are physics-based simulations that couple fracture mechanics to wave propagation and are used to explain specific earthquake observations or to generate a suite of predictions to understand the influence of frictional, geometrical, stress, and material parameters. These simulations can model single earthquakes or multiple earthquake cycles. The objective of this article is to provide a self-contained and practical guide for students starting in the field of earthquake dynamics. Senior researchers who are interested in learning the first-order constraints and general approaches to dynamic rupture problems will also benefit. We believe this guide is timely given the recent growth of computational resources and the range of sophisticated modeling software that are now available. We start with a succinct discussion of the essential physics of earthquake rupture propagation and walk the reader through the main concepts in dynamic rupture model design. We briefly touch on fully dynamic earthquake cycle models but leave the details of this topic for other publications. We also highlight examples throughout that demonstrate the use of dynamic rupture models to investigate various aspects of the faulting process.

Cite this article as Ramos, M. D., P. Thakur, Y. Huang, R. A. Harris, and K. J. Ryan (2022). Working with Dynamic Earthquake Rupture Models: A Practical Guide, Seismol. Res. Lett. 93, 2096–2110, doi: 10.1785/0220/2.20021.

TPV35

Simulated Seismic Waves at Earth's surface produced by a 2004 M6 Parkfield earthquake rupture simulation

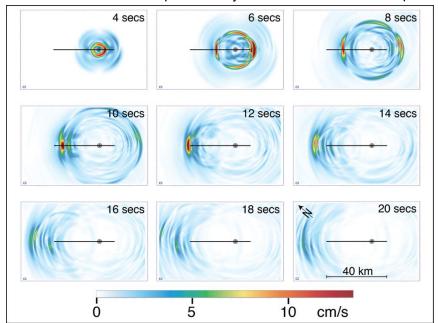
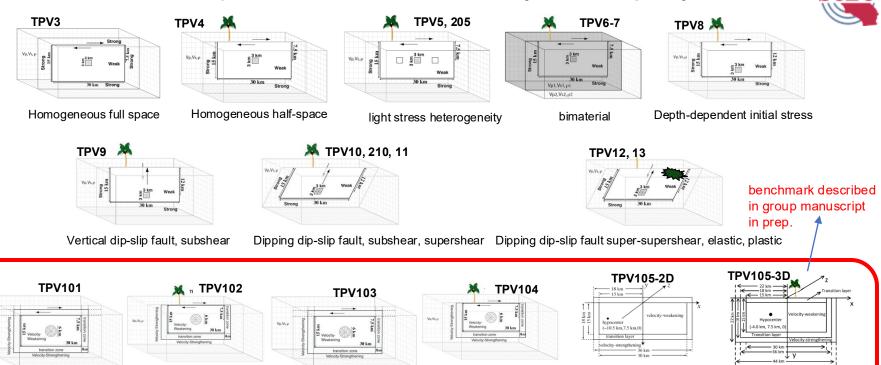


figure from Harris et al., SRL, 2018

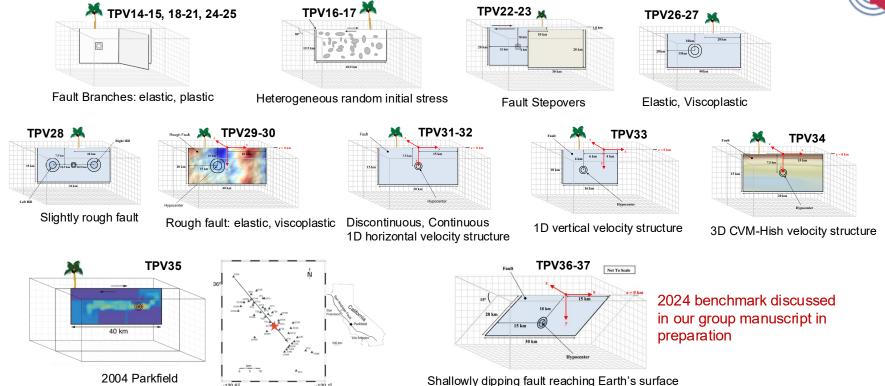
Many of our group's tested dynamic earthquake rupture codes (updated Table 1 from our group paper, Harris et al., SRL, 2018)


Code Name	Code Type	References	Notes	Code Availability
AWP-ODC	Finite difference	Roten et al., 2016; Dalguer & Day, 2007		contact authors Roten, Olsen, Cui
beard	DG finite element	Kozdon et al., 2015		contact author Kozdon
CG-FDM	finite difference	Zhang et al., 2014		contact author Zhang
EqSim	finite element	Aagaard et al., 2001	superseded by PyLith	
DFM	finite difference	Day & Ely, 2002		contact author Dalguer
DGCrack	DG finite element	Tago et al., 2012		contact authors Tago or Cruz-Atienza
EQdyna	finite element	Duan & Oglesby, 2006		contact author Duan
FaultMod	finite element	Barall, 2009		https://code.usgs.gov/esc/faultmod
Fdfault	finite difference	Daub, 2016		https://github.com/egdaub/fdfault
Kase code	finite difference	Kase & Kuge, 2001		contact author Kase
MAFE	finite element	Ma et al., 2008; Ma & Andrews, 2010		contact author Ma
PyLith	finite element	Aagaard et al., 2013		https://geodynamics.org/cig/software/pylith
SeisSol	DG finite element	Pelties et al., 2012; Pelties et al., 2014		https://github.com/SeisSol/SeisSol/wiki
SESAME	spectral element	Galvez et al., 2014	same as SPECFEM3D	
SORD	finite difference	Ely et al., 2009; Shi & Day, 2013		contact author Shi
SPECFEM3D	spectral element	Galvez et al., 2014		https://geodynamics.org/cig/software/specfem3d
SPECFEM3D-old	spectral element	Kaneko et al., 2008	superseded by SPECFEM3D	
WaveQLab3D	finite difference	Duru & Dunham, 2016		https://bitbucket.org/ericmdunham/waveqlab3d

Rate-state friction with ageing law

Code Comparison Benchmarks – Incrementally added complexity

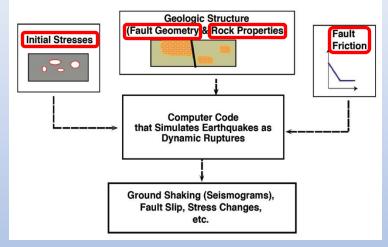
Rate-state friction with slip law with strong rate-weakening


Thermal pressurization, rate-state friction slip-law,

strong rate-weakening

Code Comparison Benchmarks – Incrementally added complexity

These benchmarks all used slip-weakening



So far, we have successfully tested the codes for a variety of

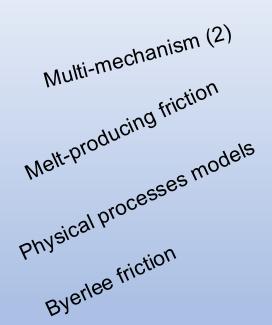
"ingredients"

- ** fault geometries **
- ** friction formulations **
- ** rock properties **
- ** initial stress conditions **

(See our group paper Harris et al., SRL, 2018. We are currently writing a new group paper about our two most recent benchmarks.)

In a suite of SCEC workshops, we investigated the dynamic rupture <u>ingredients</u> in detail

In November 2018, we discussed Fault Geometry
In January 2020, we discussed Fault Friction
In October 2020 we discussed Rock Properties
In December 2021, we discussed Stress Conditions


but we still have so much to learn (!)

TODAY WE RETURN TO THE FAULT FRICTION THEME

How does Coseismic Fault Friction Work?

What is the current thinking about this all-important ingredient of dynamic earthquake rupture?

SW (17)

SW + inelasticity proxy
SW if matches observations
SW with variable dzero
SW + cohesion

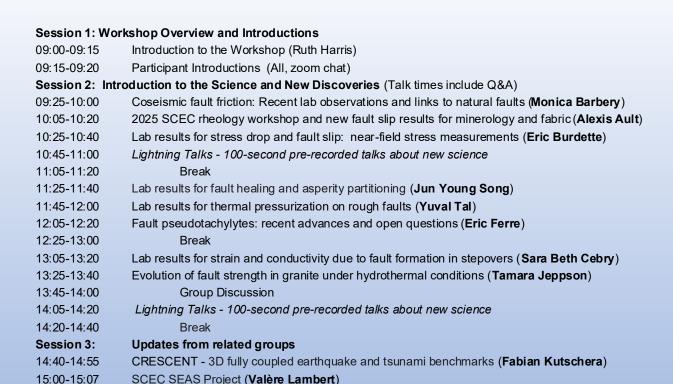
RS(11)

Lab = RS
RS + temperature effects
RS + thermal weakening
RS + flash heating
RS + fluid and temp effects
Fast-velocity weakening RS (2)
RS with strong weakening
TP with dilatancy hardening
Lab RS + bulk rheology

SCEC

friction proxies Rheology model SW&RS. both too simple assumes localized FZ DJA velocity toughening

Keep testing ideas


Questions we hope to answer in this workshop include:

- 1. What do results from the lab tell us about coseismic fault friction?
- 2. What do field observations tell us about coseismic fault friction?
- 3. Is there cool new EQ science happening that we should know about?
- 4. What are related SCEC and outside groups working on?
- 5. What should our dynamic rupture group do next?

15:12-15:19

Session 4: 15:24-16:00

SCEC Community Stress Drop Validation Study (Rachel Abercrombie/Annemarie Baltay)

Group Discussion and planning our next steps (All)

