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Cape Modern geothermal field in Utah
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Microearthquakes induced by stimulation
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Magnitudes -1 ~ 2

DAS
Sampling rate: 1000 Hz



An event captured by the vertical cable
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~3 km deep

Surface

Channel
separation:
2m

DAS
Sampling rate: 1000 Hz



The workflow for source parameter estimation
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1. Instrument 
response

2. Attenuation 
analysis

3. Single spectra 
approach

4. Spectral ratio
(EGF) approach

QResponse

Response

Cross-validation

𝑓𝑐 
∝ 𝑀0

Model

𝑓𝑐2 : EGF𝑓𝑐1 : Target 
event

(e.g., Brune, 1970) (e.g., Abercrombie, 2014, 2015)



Decomposing the P-wave spectra of DAS
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1. Source spectra

2. Attenuation
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Decomposing the P-wave spectra of DAS
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3. Sensitivity to incident angles

4. Gauge length effect

𝑠𝑖𝑛𝑐(
𝜋𝑓𝐿

𝑣 ⋅ 𝑐𝑜𝑠𝜃
)

𝑣 ⋅ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛 𝜃

𝑣 ⋅ 𝑐𝑜𝑠2𝜃

P waves

S waves

𝐿 : Gauge length
(10 m)

(Proportional to acceleration)

Bakku (2015)



Estimate attenuation using spectral ratio (along-depth)
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Q profile on the top 2.5 km
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Quality factor (Q) Density Velocity Shear-
modulus

From well logs



Accumulated attenuation (Kappa) for an event at the well bottom
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>50% of attenuation 
occurs in the top 0.5 km

𝜅 = න

𝑝𝑎𝑡ℎ

𝑡
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Quality factor (Q)



Kappa agree with other attenuation studies
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Jongmans & Malin (1995)
Abercrombie (1998)
Bethmann et al. (2012)

>50% of attenuation 
occurs in the top 0.5 km

𝜅 = න
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Single spectra fitting for source parameters
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𝑀0

𝑎3

 

𝑎 =
𝑘𝛽

𝑓𝑐

Spectral stress drop

(Brune 1970; Madariaga 1976; Eshelby 1957)

𝛽: Source Vs (from 1D model)
𝑘=0.38: (Kaneko and 

Shearer,2014)

Brune’s model

𝜌 = 2790: Density
𝑐 : Source Vs (from 1D model)
R: Hypocentral distance
𝑈𝜙𝜃 = 0.52: For P wave average

radiation pattern (Madariaga, 
1976)

𝑀0 =
4𝜋𝜌𝑐3𝑅Ω0

𝑈𝜙𝜃

𝛾 = 1 : Brune’s model
𝑛 = 2 : High-f fall-off rate

Seismic moment

𝜅 = න

𝑝𝑎𝑡ℎ

𝑡

𝑄

Quality Control

• Spectral point-wise SNR>3
• 1.2 fmin <fc<0.8 fmax
• Reduced chi-square (misfit) <0.02
• Uncertainty < 50% (std/result)
• Incident angle < 45 deg
• Good cable (dep 2.0~2.4 km)

Stack channels every 20 m



Which DAS channel to use matters

13

M
is
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Which DAS channel to use matters
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M
is

fit

Uncertainty in incident angel can cause 
systematic bias in response removal
Possibly cause trade–offs with source 
parameters.



Compare fc estimated using single spectra and the EGF
approach

15

Event pair 1 Event pair 2



No evidence that the stress drop is magnitude dependent
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• Median: 36.7 MPa
• A higher sampling rate (> 1000

Hz) is required to characterize
smaller (Mw < 0) events.

Single-spectra fitting results



Mapping stress drops
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Possible causes  of low stress drop 
zones:
• Higher attenuation?
• Lower rupture velocity?
• Weaker rock (higher temp?)

Single-spectra fitting results



Summary

• We estimate Q in the top 2.5 km in Utah.

• Low Q in the top 0.5 km agrees with Parkfield,
South CA (Cajon Pass), and Switzerland.

• We estimate spectral stress drop using
single-spectra fitting for 0 < Mw < 2.
• No obvious deviation of constant stress drop

• DAS response removal can be another 
source of systematic bias.

Chang, H., Nakata, N., Abercrombie, R. E., Dadi, S. & Titov, T. (in prep.). Characterizing shallow 
attenuation and microearthquake source parameters using downhole DAS array at the Cape 
Modern geothermal field. 
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Source radius and slip
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Radius (r)

Slip (D)

Assume different shear
modulus (𝜇)

𝐷 =
𝑀0

𝜇𝜋𝑟2𝑟 =
𝑘𝛽

𝑓𝑐
𝑘 = 0.38
𝛽 : Shear-wave velocity

(Assuming double-coupled)



∆𝜎 vs focal mechanism, depth, injection distance
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Normal Strike-slip Reverse • Goertz-Allmann & Wiemer
(2012) expected large distance,
larger ∆𝜎

• Opposite trend here because of
∆𝜎-depth correlation



Comparison with Mw estimated by surface network
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Spectral ratio (EGF) approach effectively avoids site-effect bias
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However, the EGF 
assumptions brings in 
other uncertainties.
(Still large scattering!)

Source

Path + Site

Instrument 𝑈1 𝑓 = 𝑆𝑜𝑢𝑟𝑐𝑒1 𝑓 𝑃𝑎𝑡ℎ 𝑓 𝑆𝑖𝑡𝑒 𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(𝑓)

𝑈2 𝑓 = 𝑆𝑜𝑢𝑟𝑐𝑒2 𝑓 𝑃𝑎𝑡ℎ 𝑓 𝑆𝑖𝑡𝑒 𝑓 𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡(𝑓)

Empirical Green’s
Function (EGF)

Ω𝑟 𝑓 = Ω0𝑟

1 +
𝑓

𝑓𝑐1

𝛾𝑛

1 +
𝑓

𝑓𝑐2

𝛾𝑛

1/𝛾

𝑓𝑐1

𝑓𝑐2

Ω𝑟 𝑓

Frequency

However, an EGF can be difficult to find…
e.g., Need highly similar waveforms between target and EGF (cc>0.8)
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