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Cape Modern geothermal field in Utah

Enhanced Geothermal System (EGS)
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Microearthquakes induced by stimulation
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An event captured by the vertical cable
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The workflow for source parameter estimation
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response
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Decomposing the P-wave spectra of DAS

(Proportional to acceleration)
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Decomposing the P-wave spectra of DAS

(Proportional to acceleration)

3. Sensitivity to incident angles
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Estimate attenuation using spectral ratio (along-depth)

Stacked P-wave spectra Spectral ratio A e —(TfAL/Q)
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Q profile on the top 2.5 km
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Accumulated attenuation (Kappa) for an event at the well bottom
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Kappa agree with other attenuation studies
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Single spectra fitting for source parameters

Amplitude

Stack channels every 20 m
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* Uncertainty <50% (std/result)
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* Good cable (dep 2.0~2.4 km)
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Which DAS channel to use matters
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Which DAS channel to use matters
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Compare fc estimated using single spectra and the EGF
approach
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No evidence that the stress drop is magnitude dependent

Single-spectra fitting results

* Median: 36.7 MPa
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Mapping stress drops
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Summary

* We estimate Q in the top 2.5 km in Utah.

« Low Q in the top 0.5 km agrees with Parkfield,
South CA (Cajon Pass), and Switzerland.

* We estimate spectral stress drop using
single-spectra fitting for 0 < Mw < 2.
« No obvious deviation of constant stress drop

* DAS response removal can be another
source of systematic bias.

Chang, H., Nakata, N., Abercrombie, R. E., Dadi, S. & Titov, T. (in prep.). Characterizing shallow
attenuation and microearthquake source parameters using downhole DAS array at the Cape
Modem geothermal field.
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Source radius and slip
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Ao vs focal mechanism, depth, injection distance
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Comparison with Mw estimated by surface network

Mw from catalog
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Spectral ratio (EGF) approach effectively avoids site-effect bias

5 Instrument U,(f) = Source,(f) Pathtf )y SitetfHdnstrument (f)
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However, an EGF can be difficult to find...
€.8., Need highly similar waveforms between target and EGF (cc>0.8)

23



	Slide 1: Microearthquake stress drop and attenuation from borehole DAS at Cape Modern
	Slide 2: Cape Modern geothermal field in Utah
	Slide 3: Microearthquakes induced by stimulation 
	Slide 4: An event captured by the vertical cable
	Slide 5: The workflow for source parameter estimation
	Slide 6: Decomposing the P-wave spectra of DAS
	Slide 7: Decomposing the P-wave spectra of DAS
	Slide 8: Estimate attenuation using spectral ratio (along-depth)
	Slide 9: Q profile on the top 2.5 km
	Slide 10: Accumulated attenuation (Kappa) for an event at the well bottom
	Slide 11: Kappa agree with other attenuation studies
	Slide 12: Single spectra fitting for source parameters
	Slide 13: Which DAS channel to use matters
	Slide 14: Which DAS channel to use matters
	Slide 15: Compare fc estimated using single spectra and the EGF approach
	Slide 16: No evidence that the stress drop is magnitude dependent
	Slide 17: Mapping stress drops 
	Slide 18: Summary
	Slide 19: References
	Slide 20: Source radius and slip
	Slide 21: increment sigma  vs focal mechanism, depth, injection distance
	Slide 22: Comparison with Mw estimated by surface network
	Slide 23: Spectral ratio (EGF) approach effectively avoids site-effect bias

