Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Investigating Complex Slow Slip Evolution with High-Resolution Tremor Catalogs and Numerical Simulations

Yajun Peng, & Allan M. Rubin

Published August 12, 2016, SCEC Contribution #6661, 2016 SCEC Annual Meeting Poster #203

Significant complexities of episodic slip and tremor (ETS) have been revealed by short tremor bursts lasting minutes to hours, many of which show clear migration patterns. In Cascadia, large-scale rapid tremor reversals (RTRs) extend tens of km along strike, repeatedly occupying the same general source area during an ETS episode [e.g. Thomas et al, 2013; Peng and Rubin, 2016]. We also observe repetitive tremor bursts occurring well behind the main front in Guerrero, Mexico. In contrast to RTRs, these bursts do not originate from the main front, and generally propagate along the slip direction, similar to those reported from Shikoku, Japan [Shelly et al., 2007]. Both types of bursts occur intermittently, with recurrence intervals gradually increasing to tidal periods. However, even the tidally-modulated bursts are unlikely to be driven solely by tidal forcing. Since the stress must decrease during each burst, while the local maxima of the tidal stress remain nearly constant, each tidal peak stress cannot supply the stress drop for the next repetition.

Here we explore the possibility that these repetitive bursts are driven by surrounding tremor-less slow slip. We develop a numerical model governed by a rate-and-state friction law that transitions from velocity-weakening to velocity-strengthening with increasing slip speed. A region with a larger transitional velocity than the background is used to represent the tremor zone. For this zone to slip intermittently, its stiffness needs to be sufficiently large that the slip during each burst is less than the total slip of the background during an episode, but smaller than its own critical stiffness. This critical stiffness decreases as the ratio of the background loading rate to the transitional cutoff velocity increases; from elasticity this ratio decreases as the main front moves across the model tremor zone. With these considerations, we successfully reproduce the burst-like behavior with increasingly large recurrence intervals in the model tremor zone during a single slow slip event. Future work will include investigating the propagation velocities of these bursts, which in Guerrero decrease systematically with increasing time since the previous migration through the same region, and tidal modulation of their recurrence intervals.

Key Words
slow slip, tremor bursts, rate-and-state friction

Peng, Y., & Rubin, A. M. (2016, 08). Investigating Complex Slow Slip Evolution with High-Resolution Tremor Catalogs and Numerical Simulations. Poster Presentation at 2016 SCEC Annual Meeting.

Related Projects & Working Groups