Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Distinct Element Simulations of Shear Rupture in Dilatant Granular Media

Fernando E. Garcia, & Jonathan Bray

Published September 2018, SCEC Contribution #11682

The development of shear rupture in granular media due to boundary deformation was captured using the distinct element method (DEM). Assemblages of nonspherical, three-dimensional particles undergoing direct shear test simulations exhibited a range of soil responses, from highly contractive to highly dilative depending on their initial void ratio as well as the applied normal stress. Arched structures of strong contact forces that are consistent with the stress-arching phenomenon developed during anchor pull-out and trapdoor simulations. Earthquake fault rupture propagation through soil varied systematically for reverse and normal faults dipping at various angles. The final shapes of the shear rupture surfaces were consistent with those expected based on a model developed through sandbox experiments. Key details of the shear rupture mechanisms during surface fault rupture were elucidated through examination of particle rotations, frictional dissipation, shear strains, volumetric strains, and contact forces. The mechanism of graben formation was shown through the reduction of the magnitude of the contact forces at the top of the soil arch that formed above the bedrock fault. DEM simulations provided useful insights into boundary deformation problems.

Key Words
Arching; Direct shear test; Distinct element method; Graben; Sphere cluster; Surface fault rupture.

Citation
Garcia, F. E., & Bray, J. (2018). Distinct Element Simulations of Shear Rupture in Dilatant Granular Media. International Journal of Geomechanics, 18(9). doi: 10.1061/(ASCE)GM.1943-5622.0001238.