Exciting news! We're transitioning to the Statewide California Earthquake Center. Our new website is under construction, but we'll continue using this website for SCEC business in the meantime. We're also archiving the Southern Center site to preserve its rich history. A new and improved platform is coming soon!

Ultrasonic imaging of microscale processes in quartz gouge during compression and shearing

Amin Gheibi, & Reza Hedayat

Published October 27, 2020, SCEC Contribution #11747

Active ultrasonic monitoring in rock joints and gouge materials has the potential to detect the signatures of shear failure for a wide range of sliding modes, from slow and stable movements to fast and unstable sliding. While these collected measurements currently are being used to identify the seismic precursors to shear failure in rock joints and gouge materials, the underlying physical processes and contact scale mechanisms that control the changes in ultrasonic wave attributes are still poorly understood. To address this knowledge gap, this paper aims to investigate the relationship between the variations in ultrasonic wave attributes and the underlying particle scale mechanisms during both compression and shearing. Our double direct shear experiments were coupled with ultrasonic wave propagation measurements on granular quartz gouges, in which the gouge layers were sheared under different sliding velocities and constant normal stress conditions. Simultaneously, ultrasonic waveforms were continuously recorded during shearing with a fast data acquisition system and three pairs of ultrasonic wave transducers embedded at the two sides of the gouge layers. Different particle comminution mechanisms were observed from the non-uniform distribution of normal and shear stresses through the changes in ultrasonic transmissivity and scanning electron microscope (SEM) images. Our results show that the signatures of the geometry- and time-dependent variations of the inter-particle contact quality and pore volume changes with sliding velocity and slip accumulation were clearly captured from the variations in the transmitted wave amplitude and the dominant frequency, respectively. In addition, we found that variations in dominant frequency corresponded to dilation and compaction of the granular gouge layer during compression as well as stable and unstable sliding. Our results therefore confirmed that non-destructive acoustic techniques are capable of capturing a variety of micromechanical processes during fault gouge deformation and may prove useful in natural settings.

Key Words
Granular material, Ultrasonic investigation, Particle comminution, Compaction and dilation

Citation
Gheibi, A., & Hedayat, R. (2020). Ultrasonic imaging of microscale processes in quartz gouge during compression and shearing. Journal of Rock Mechanics and Geotechnical Engineering,. doi: 10.1016/j.jrmge.2020.03.011.